Trang chủ Lớp 11 Toán lớp 11 Nâng cao (sách cũ) Câu 11 trang 225 Đại số và Giải tích 11 Nâng cao,...

Câu 11 trang 225 Đại số và Giải tích 11 Nâng cao, Chứng minh rằng...

Chứng minh rằng :. Câu 11 trang 225 SGK Đại số và Giải tích 11 Nâng cao - ÔN TẬP CUỐI NĂM ĐẠI SỐ VÀ GIẢI TÍCH

Ta đã biết \(\cos {\pi  \over {{2^2}}} = {1 \over 2}\sqrt 2 .\) Chứng minh rằng :

a. \(\cos {\pi  \over {{2^3}}} = {1 \over 2}\sqrt {2 + \sqrt 2 } \)

b. \(\cos {\pi  \over {{2^n}}} = {1 \over 2}\underbrace {\sqrt {2 + \sqrt {2 + \sqrt {....... + \sqrt 2 } } } }_{n - 1\,\text{ dấu căn}}\)   (1)   với mọi số nguyên n ≥ 2.

a.

\(\eqalign{  & {\cos ^2}{\pi  \over {{2^3}}} = {\cos ^2}{\pi  \over 8} = {{1 + \cos {\pi  \over 4}} \over 2} = {{1 + {{\sqrt 2 } \over 2}} \over 2} \cr&= {{2 + \sqrt 2 } \over 4}  \cr  &  \Rightarrow \cos {\pi  \over {{2^3}}} = {1 \over 2}\sqrt {2 + \sqrt 2 }  \cr} \)

Advertisements (Quảng cáo)

b. Với n = 2 ta có \(\cos {\pi  \over 4} = {1 \over 2}\sqrt 2 \,\,\left( 1 \right)\) đúng.

Giả sử (1) đúng với n = k tức là :

\(\cos {\pi  \over {{2^k}}} = {1 \over 2}\sqrt {2 + \sqrt {2 + ... + \sqrt 2 } } \) (k – 1 dấu căn)

Với n = k + 1 ta có

\(\eqalign{  & {\cos ^2}{\pi  \over {{2^{k + 1}}}} = {1 \over 2}\left( {1 + \cos {\pi  \over {{2^k}}}} \right)  \cr  &  = {1 \over 2}\left( {1 + {1 \over 2}\sqrt {2 + \sqrt {2 + ... + \sqrt 2 } } } \right)  \cr  &  = {1 \over 4}\left( {2 + \sqrt {2 + \sqrt {2 + ... + \sqrt 2 } } } \right)  \cr  &  \Rightarrow \cos {\pi  \over {{2^{k + 1}}}} = {1 \over 2}\sqrt {2 + \sqrt {2 + ... + \sqrt 2 } } \,\,\left( {k\,\text{ dấu căn}} \right) \cr} \)

Vậy (1) đúng với n = k + 1 do đó (1) đúng với \(∀n ≥ 2\).

Bạn đang xem bài tập, chương trình học môn Toán lớp 11 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)