Trang chủ Lớp 11 Toán lớp 11 Nâng cao (sách cũ) Câu 25 trang 112 SGK Hình học 11 Nâng cao, Cho hai...

Câu 25 trang 112 SGK Hình học 11 Nâng cao, Cho hai mặt phẳng vuông góc (P) và (Q) có giao tuyến Δ. Lấy A, B cùng thuộc Δ và lấy C ϵ (P), D ϵ (Q) sao cho AC ⊥ AB, BD ⊥ AB và AB = AC = BD. Xác...

Cho hai mặt phẳng vuông góc (P) và (Q) có giao tuyến Δ. Lấy A, B cùng thuộc Δ và lấy C ϵ (P), D ϵ (Q) sao cho AC ⊥ AB, BD ⊥ AB và AB = AC = BD. Xác định thiết diện của tứ diện ABCD khi cắt bởi mặt phẳng (α) đi qua điểm A và vuông góc với CD. Tính diện tích thiết diện khi AC = AB = BD = a.. Câu 25 trang 112 SGK Hình học 11 Nâng cao - Bài 4: Hai mặt phẳng vuông góc

Cho hai mặt phẳng vuông góc (P) và (Q) có giao tuyến Δ. Lấy A, B cùng thuộc Δ và lấy C ϵ (P), D ϵ (Q) sao cho AC ⊥ AB, BD ⊥ AB và AB = AC = BD. Xác định thiết diện của tứ diện ABCD khi cắt bởi mặt phẳng (α) đi qua điểm A và vuông góc với CD. Tính diện tích thiết diện khi AC = AB = BD = a.

Gọi I là trung điểm của BC thì AI ⊥ BC. Do BD ⊥ mp(ABC) nên AI ⊥ CD (định lí ba đường vuông góc).

Trong mp(CDB), kẻ IJ vuông góc với CD (J ϵ CD) thì mp(AIJ) chính là mặt phẳng (α) và thiết diện phải tìm là tam giác AIJ

Advertisements (Quảng cáo)

Tam giác AIJ là tam giác vuông tại I.

Vậy \({S_{AIJ}} = {1 \over 2}AI.IJ\)

Ta có:

\(\eqalign{  & AI = {1 \over 2}BC = {{a\sqrt 2 } \over 2}  \cr  & {{IJ} \over {DB}} = {{CI} \over {CD}} \Rightarrow IJ = {{CI} \over {CD}}.DB = {{{{a\sqrt 2 } \over 2}} \over {a\sqrt 3 }}.a = {{a\sqrt 6 } \over 6} \cr} \)

Vậy \({S_{AIJ}} = {1 \over 2}.{{a\sqrt 2 } \over 2}.{{a\sqrt 6 } \over 6} = {{{a^2}\sqrt 3 } \over {12}}\)

Bạn đang xem bài tập, chương trình học môn Toán lớp 11 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)