Trang chủ Lớp 11 Toán lớp 11 Bài 1 trang 82 sách đại số và giải tích 11: Bài...

Bài 1 trang 82 sách đại số và giải tích 11: Bài 1. Phương pháp quy nạp Toán học...

Bài 1 trang 82 sách đại số và giải tích 11: Bài 1. Phương pháp quy nạp toán học. Bài 1. Chứng minh rằng

Advertisements (Quảng cáo)

Bài 1. Chứng minh rằng với \(n \in {\mathbb N}^*\), ta có đẳng thức:

a) \(2 + 5+ 8+…. + 3n – 1 =\frac{n(3n+1)}{2}\);

b) \( \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+…+\frac{1}{2^{n}}=\frac{2^{n}-1}{2^{n}}\);

c) \({1^2} + {2^2} + {3^2} + … + {n^2}= \frac{n(n+1)(2n+1)}{6}\)

Hướng dẫn giải

a) Với \(n = 1\), vế trái chỉ có một số hạng là \(2\), vế phải bằng \( \frac{1.(3.1+1)}{2} = 2\) 

Vậy hệ thức a) đúng với \(n = 1\).

Đặt vế trái bằng  \(S_n\)

Giả sử đẳng thức a) đúng với \(n = k ≥ 1\), tức là 

 \(S_k=2 + 5 + 8 + …+ 3k – 1 =  \frac{k(3k+1)}{2}\)

Ta phải chứng minh rằng a) cũng đúng với \(n = k + 1\), nghĩa là phải chứng minh

\(S_{k+1}= 2 + 5 + 8 + ….+ 3k -1 + (3(k + 1) – 1) =   \frac{(k+1)(3(k+1)+1)}{2}\)

Thật vậy, từ giả thiết quy nạp, ta có: \({S_{k + 1}} = {\rm{ }}{S_k} + {\rm{ }}3k{\rm{ }} + {\rm{ }}2\) = \( \frac{k(3k+1)}{2} + 3k + 2\)

= \( \frac{3k^{2}+k+6k+4}{2}\) \( =\frac{3(k^{2}+2k+1)+k+1}{2}=\frac{(k+1)(3(k+1)+1)}{2}\) (điều phải chứng minh)

Vậy theo nguyên lí quy nạp toán học, hệ thức a) đúng với mọi \(n \in {\mathbb N}^*\)

b) Với \(n = 1\), vế trái bằng \( \frac{1}{2}\), vế phải bằng \( \frac{1}{2}\), do đó hệ thức đúng.

Đặt vế trái bằng \(S_n\).

Giả sử hệ thức b) đúng với \(n = k ≥ 1\), tức là \( S_{k}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+…+\frac{1}{2^{k}}=\frac{2^{k}-1}{2^{k}}\)

Ta phải chứng minh \( S_{k+1}=\frac{2^{k+1}-1}{2^{k+1}}\).

Thật vậy, từ giả thiết quy nạp, ta có: \( S_{k+1}=S_{k}+\frac{1}{2^{k+1}}=\frac{2^{k}-1}{2^{k}}+\frac{1}{2^{k+1}}\)

          \(= \frac{2^{k+1}-2+1}{2^{k+1}}=\frac{2^{k+1}-1}{2^{k+1}}\) (điều phải chứng minh)

Vậy theo nguyên lí quy nạp toán học, hệ thức b) đúng với mọi \(n \in {\mathbb N}^*\)

c) Với \(n = 1\), vế trái bằng \(1\), vế phải bằng \( \frac{1(1+1)(2+1)}{6}= 1\) nên hệ thức c) đúng với \(n = 1\).

Đặt vế trái bằng \(S_n\).

Giả sử hệ thức c) đúng với \(n = k  ≥ 1\), tức là

\(S_k= {1^2} + {2^2} + {3^2} + … + {k^2}=\frac{k(k+1)(2k+1)}{6}\)

Ta phải chứng minh \( S_{k+1}=\frac{(k+1)(k+2)(2(k+1)+1)}{6}\)

Thật vậy, từ giả thiết quy nạp ta có: 

\({S_{k + 1}} = {\rm{ }}{S_k} + {\rm{ }}{\left( {k{\rm{ }} + {\rm{ }}1} \right)^2}\) =  \( \frac{k(k+1)(2k+1)}{6}+(k+1)^{2}\)\(= (k + 1).\frac{k(2k+1)+6(k+1)}{6}  = (k + 1)\frac{2k^{2}+k+6k+6}{6}\)       

\( =\frac{(k+1)(2k(k+2)+3)+3(k+2)}{6}=\frac{(k+1)(k+2)(2(k+1)+1)}{6}\) (đpcm)

Vậy theo nguyên lí quy nạp toán học, hệ thức c) đúng với mọi  \(n \in {\mathbb N}^*\).