Cho số nguyên \(n \ge 2\) và cho số thực \({a_1},{a_2},..{a_n}\) thuộc khoảng \(\left( {0;1} \right)\). Chứng minh rằng
\(\left( {1 - {a_1}} \right)\left( {1 - {a_2}} \right)...\left( {1 - {a_n}} \right) > 1 - {a_1} - {a_2} - ... - {a_n}\)
Ta sẽ giải bài toán bằng phương pháp quy nạp
Kí hiệu bất đẳng thức cần chứng minh theo yêu cầu của đề bài bởi (1)
Với \(n = 2,\) xét hai số thực túy ý \({a_1},{a_2} \in \left( {0;1} \right)\) ta có
\(\left( {1 - {a_1}} \right)\left( {1 - {a_2}} \right) \)
\(= 1 - {a_1} - {a_2} + {a_1}{a_2} > 1 - {a_1} - {a_2}\) (do \({a_1},{a_2} > 0\) )
Như thế, (1) đúng khi \(n = 2\)
Giả sử đã có (1) đúng khi \(n = k,k \in N^*\) và \(k \ge 2,\)
Xét \(k + 1\) số thực tùy ý \({a_1},{a_2},..{a_k},{a_{k + 1}}\) thuộc khoảng \(\left( {0;1} \right)\)
Vì k số \({a_1},{a_2},..{a_k}\) thuộc khoảng \(\left( {0;1} \right)\) nên theo giả thiết quy nạp ta có
Advertisements (Quảng cáo)
\(\left( {1 - {a_1}} \right)\left( {1 - {a_2}} \right)...\left( {1 - {a_k}} \right) > 1 - {a_1} - {a_2} - ... - {a_k}\)
Từ đó, vì \(1 - {a_{k + 1}} > 0,\) suy ra
\(\left( {1 - {a_1}} \right)\left( {1 - {a_2}} \right)...\left( {1 - {a_k}} \right)\left( {1 - {a_{k + 1}}} \right) >\)
\(\left( {1 - {a_1} - {a_2} - ... - {a_k}} \right)\left( {1 - {a_{k + 1}}} \right)\) (2)
Lại có
\(\eqalign{
& \left( {1 - {a_1} - {a_2} - ... - {a_k}} \right)\left( {1 - {a_{k + 1}}} \right) \cr
& = 1 - {a_1} - {a_2} - ... - {a_k} - {a_{k + 1}} \cr&+ \left( {1 - {a_1} - {a_2} - ... - {a_k}} \right){a_{k + 1}} \cr
& > 1 - {a_1} - {a_2} - ... - {a_k} - {a_{k + 1}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(3) \cr} \)
Từ (2) và (3) ta được
\(\left( {1 - {a_1}} \right)\left( {1 - {a_2}} \right)...\left( {1 - {a_k}} \right)\left( {1 - {a_{k + 1}}} \right) > \)
\(1 - {a_1} - {a_2} - ... - {a_k} - {a_{k + 1}}\)
Như vậy (1) cũng đúng khi \(n = k + 1\)
Từ các chứng minh trên suy ra có điều cần chứng minh theo yêu cầu của để bài.