Bài 2. Chứng minh rằng với \(n\in {\mathbb N}^*\) ta luôn có:
a) \({n^3} + {\rm{ }}3{n^2} + {\rm{ }}5n\) chia hết cho \(3\);
b) \({4^n} + {\rm{ }}15n{\rm{ }} - {\rm{ }}1\) chia hết cho \(9\);
c) \({n^3} + {\rm{ }}11n\) chia hết cho \(6\).
Hướng dẫn giải:
a) Đặt \(S_n={n^3} + {\rm{ }}3{n^2} + {\rm{ }}5n\)
Với \(n = 1\) thì \(S_1= 9\) chia hết cho \(3\)
Giả sử với \(n = k ≥ 1\), ta có \(S_k= ({k^3} + {\rm{ }}3{k^2} + {\rm{ }}5k) \vdots\) \( 3\)
Ta phải chứng minh rằng \(S_{k+1}\)\( \vdots\) \(3\)
Thật vậy :
\({\left( {k{\rm{ }} + {\rm{ }}1} \right)^3} + {\rm{ }}3{\left( {k{\rm{ }} + {\rm{ }}1} \right)^2} + {\rm{ }}5\left( {k{\rm{ }} + {\rm{ }}1} \right)\)
\( = {k^3}{\rm{ }} + {\rm{ }}3{k^2} + {\rm{ }}3k{\rm{ }} + {\rm{ }}1{\rm{ }} + {\rm{ }}3{k^2} + {\rm{ }}6k{\rm{ }} + {\rm{ }}3{\rm{ }} + {\rm{ }}5k{\rm{ }} + {\rm{ }}5\)
\( = {\rm{ }}{k^3} + {\rm{ }}3{k^2} + {\rm{ }}5k{\rm{ }} + {\rm{ }}3{k^2} + {\rm{ }}9k{\rm{ }} + {\rm{ }}9\)
hay \({S_{k + 1}} = {S_k} + {\rm{ }}3({k^2} + {\rm{ }}3k{\rm{ }} + {\rm{ }}3)\)
Theo giả thiết quy nạp thì \(S_k \) \( \vdots\) \(3\), mặt khác \(3({k^2} + {\rm{ }}3k{\rm{ }} + {\rm{ }}3) \vdots\) \(3\) nên \(S_{k+1} \vdots\) \(3\).
Vậy \({n^3} + {\rm{ }}3{n^2} + {\rm{ }}5n\) chia hết cho \(3\) với mọi \(n\in {\mathbb N}^*\) .
b) Đặt \({S_n} = {4^n} + {\rm{ }}15n{\rm{ }} - {\rm{ }}1\)
Với \(n{\rm{ }} = {\rm{ }}1,{S_1} = {\rm{ }}{4^1} + {\rm{ }}15.1{\rm{ }}-{\rm{ }}1{\rm{ }} = {\rm{ }}18\) nên \(S_1 \vdots\) \(9\)
Advertisements (Quảng cáo)
Giả sử với \(n = k ≥ 1\) thì \({S_k} = {\rm{ }}{4^k} + {\rm{ }}15k{\rm{ }} - {\rm{ }}1\) chia hết cho \(9\).
Ta phải chứng minh \(S_{k+1} \vdots\) \(9\).
Thật vậy, ta có:
\({S_{k + 1}} = {\rm{ }}{4^{k{\rm{ }} + {\rm{ }}1}} + {\rm{ }}15\left( {k{\rm{ }} + {\rm{ }}1} \right){\rm{ }}-{\rm{ }}1\)
\( = {\rm{ }}4({4^k} + {\rm{ }}15k{\rm{ }}-{\rm{ }}1){\rm{ }}-{\rm{ }}45k{\rm{ }} + {\rm{ }}18{\rm{ }} = {\rm{ }}4{S_k}-{\rm{ }}9\left( {5k{\rm{ }}-{\rm{ }}2} \right)\)
Theo giả thiết quy nạp thì \(S_k \vdots\) \(9\) nên \(4S_1 \vdots\) \(9\), mặt khác \(9(5k - 2) \vdots\) \(9\), nên \(S_{k+1} \vdots\) \(9\)
Vậy \((4^n+ 15n - 1) \vdots\) \(9\) với mọi \(n\in {\mathbb N}^*\)
c) Đặt \({S_n} = {n^3} + {\rm{ }}11n\)
Với \(n = 1\), ta có \({S_1} = {\rm{ }}{1^3} + {\rm{ }}11.1{\rm{ }} = {\rm{ }}12\) nên \(S_1\) \( \vdots\) \(6\)
Giả sử với \(n = k ≥ 1\) ,ta có \({S_{k}} = {k^3} + {\rm{ }}11k \vdots\) \(6\)
Ta phải chứng minh \(S_{k+1}\)\( \vdots\) 6
Thật vậy, ta có
\({S_{k + 1}} = {\rm{ }}\left( {k{\rm{ }} + {\rm{ }}1} \right)^3{\rm{ }} + {\rm{ }}11\left( {k{\rm{ }} + {\rm{ }}1} \right){\rm{ }} = {\rm{ }}{k^3} + {\rm{ }}3k^2+ {\rm{ }}3k{\rm{ }} + {\rm{ }}1{\rm{ }} + {\rm{ }}11k{\rm{ }} + {\rm{ }}11\)
\( = ({\rm{ }}{k^3} + {\rm{ }}11k){\rm{ }} + {\rm{ }}3({k^2} + {\rm{ }}k{\rm{ }} + {\rm{ }}4){\rm{ }} = {\rm{ }}{S_k} + {\rm{ }}3({k^2} + {\rm{ }}k{\rm{ }} + {\rm{ }}4)\)
Theo giả thiết quy nạp thì \(S_k\)\( \vdots\) \(6\), mặt khác \(k^2+ k + 4 = k(k + 1) + 4\) là số chẵn nên \(3(k^2+ k + 4)\) \( \vdots\) \(6\), do đó \(S_{k+1}\)\( \vdots\) \(6\)
Vậy \(n^3+ 11n\) chia hết cho \(6\) với mọi \(n\in {\mathbb N}^*\).