Trang chủ Lớp 11 Toán lớp 11 (sách cũ) Bài 3 trang 156 sách giáo khoa Đại số và Giải tích...

Bài 3 trang 156 sách giáo khoa Đại số và Giải tích 11: Bài 1. Định nghĩa và ý nghĩa của đạo hàm...

Bài 3 trang 156 sách giáo khoa Đại số và Giải tích 11: Bài 1. Định nghĩa và ý nghĩa của đạo hàm. 3. Tính (bằng định nghĩa) đạo hàm của mỗi hàm số sau tại các điểm đã chỉ ra

Bài 3. Tính (bằng định nghĩa) đạo hàm của mỗi hàm số sau tại các điểm đã chỉ ra:

a) \(y = x^2+ x\) tại \(x_0= 1\);

b) \(y =  \frac{1}{x}\) tại \(x_0= 2\);

c) \(y = \frac{x+1}{x-1}\) tại \(x_0 = 0\).

a) Giả sử \(∆x\) là số gia của số đối tại \(x_0 = 1\). Ta có:

\(∆y = f(1 + ∆x) - f(1) = (1 + ∆x)^2+ (1 + ∆x) - (1^2+ 1)\)

\(= 3∆x + (∆x)^2\)

\( \frac{\Delta y}{\Delta x} = 3 + ∆x\); \(\mathop {\lim }\limits_{\Delta x \to 0} {{\Delta y} \over {\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} (3 + \Delta x) = 3\)

Advertisements (Quảng cáo)

Vậy \(f'(1) = 3\).

b) Giả sử \(∆x\) là số gia của số đối tại \(x_0= 2\). Ta có:

\(∆y = f(2 + ∆x) - f(2) =  \frac{1}{2+\Delta x}  -  \frac{1}{2} = -  \frac{\Delta x}{2\left ( 2+\Delta x \right )}\);

\( \frac{\Delta y}{\Delta x}\) = -  \( \frac{1}{2\left ( 2+\Delta x \right )}\); \(\mathop {\lim }\limits_{\Delta x \to 0} {{\Delta y} \over {\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \left( { - {1 \over {2.(2 + \Delta x)}}} \right) =  - {1 \over 4}\)

Vậy \(f'(2) = -   \frac{1}{4}\).

c) Giả sử \(∆x\) là số gia của số đối tại \(x_0= 0\).Ta có:

\(∆y = f(∆x) - f(0) = \frac{\Delta x+1}{\Delta x-1}- ( -1) =  \frac{2\Delta x}{\Delta x-1}\);

\( \frac{\Delta y}{\Delta x}\) = \( \frac{2}{\Delta x-1}\) ; \( \mathop {\lim}\limits_{\Delta x\rightarrow 0}\) \( \frac{\Delta y}{\Delta x}\) = \( \mathop {\lim}\limits_{\Delta x\rightarrow 0}\)  \( \frac{2}{\Delta x-1} = -2\).

Vậy \(f'(0) = -2\).

Bạn đang xem bài tập, chương trình học môn Toán lớp 11 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)