Trang chủ Lớp 11 Toán lớp 11 (sách cũ) Bài 4 trang 83 sgk Toán 11: Bài 1. Phương pháp quy...

Bài 4 trang 83 sgk Toán 11: Bài 1. Phương pháp quy nạp Toán học...

Bài 4 trang 83 sgk toán 11: Bài 1. Phương pháp quy nạp toán học. Bài 4 trang 83 sgk toán 11 Bài 4. Cho tổng

Bài 4. Cho tổng \({S_n} = {1 \over {1.2}} + {1 \over {2.3}} + ... + {1 \over {n(n + 1)}}\) với \(n\in {\mathbb N}^*\).

a) Tính \({S_1},{S_2},{S_3}\)

b) Dự đoán công thức tính tổng \(S_n\) và chứng minh bằng quy nạp.

Hướng dẫn giải:

a) Ta có:

\(\eqalign{
& {S_1} = {1 \over {1.2}} = {1 \over 2} \cr
& {S_2} = {1 \over {1.2}} + {1 \over {2.3}} = {2 \over 3} \cr
& {S_3} = {1 \over {1.2}} + {1 \over {2.3}} + {1 \over {3.4}} = {3 \over 4} \cr} \)

b) Từ câu a) ta dự đoán \({S_n} = {n \over {n + 1}}(1)\), với mọi \(n\in {\mathbb N}^*\)

Ta sẽ chứng minh đẳng thức (1) bằng phương pháp quy nạp

Khi \(n = 1\), vế trái là \({S_1} = {1 \over 2}\) vế phải bằng \({1 \over {1 + 1}} = {1 \over 2}\). Vậy đẳng thức (1) đúng.

Advertisements (Quảng cáo)

Giả sử đẳng thức (1) đúng với \(n\ge 1\), tức là 

                \({S_k} = {1 \over {1.2}} + {1 \over {2.3}} + ... + {1 \over {k(k + 1)}} = {k \over {k + 1}}\)

Ta phải chứng minh đẳng thức đúng với \(n = k + 1\), nghĩa là phải chứng minh

                  \({S_{k + 1}} = {{k + 1} \over {k + 2}}\)

Ta có : \({S_{k + 1}} = {S_k} + {1 \over {(k + 1)(k + 2)}} = {k \over {k + 1}} + {1 \over {(k + 1)(k + 2)}}\)

                     \( = {{{k^2} + 2k + 1} \over {(k + 1)(k + 2)}} = {{k + 1} \over {k + 2}}\)

tức là đẳng thức (1) đúng với \(n = k + 1\).

Vậy đẳng thức (1) đã được chứng minh.

Bạn đang xem bài tập, chương trình học môn Toán lớp 11 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)