Trang chủ Lớp 11 Toán lớp 11 (sách cũ) Bài 5 trang 53 sách giáo khoa hình học lớp 11: Bài...

Bài 5 trang 53 sách giáo khoa hình học lớp 11: Bài 1. Đại cương về đường thẳng và mặt phẳng...

Bài 5 trang 53 sách giáo khoa hình học lớp 11: Bài 1. Đại cương về đường thẳng và mặt phẳng. Cho tứ giác ABCD nằm trong mặt phẳng (α) có hai cạnh AB và CD không song song. Gọi S là điểm nằm ngoài mặt phẳng (α) và M là trung điểm đoạn SC.

Bài 5. Cho tứ giác \(ABCD\) nằm trong mặt phẳng \((α)\) có hai cạnh \(AB\) và \(CD\) không song song. Gọi \(S\) là điểm nằm ngoài mặt phẳng \((α)\) và \(M\) là trung điểm đoạn \(SC\).

a) Tìm giao điểm \(N\) của đường thẳng \(SD\) và mặt phẳng \((MAB)\)

b) Gọi \(O\) là giao điểm của \(AC\) và \(BD\). Chứng minh rằng ba đường thẳng \(SO, AM, BN\) đồng quy

a) Trong mặt phẳng \((α)\) vì \(AB\) và \(CD\) không song song nên \(AB ∩ DC = E\)

=> \(E ∈ DC\), mà \(DC ⊂ (SDC)\)

=> \(E ∈ ( SDC)\). Trong \((SDC)\) đường thẳng \(ME\) cắt \(SD\) tại \(N\)

Advertisements (Quảng cáo)

=> \(N ∈ ME\) mà \(ME ⊂ (MAB)\)

=> \(N ∈ ( MAB)\). Lại có \(N ∈ SD => N = SD ∩ (MAB)\)

b) \(O\) là giao điểm của \(AC\) và \(BD\)\( => O\) thộc \(AC\) và \(BD\), mà \(AC ⊂ ( SAC)\)

=> \(O ∈( SAC), BD ⊂ (SBD) , O ∈ (SBD)\)

=> \(O\) là một điểm chung của \((SAC)\) và \((SBD)\), mặt khác \(S\) cũng là điểm chung của \((SAC)\) và \((SBD) => (SAC) ∩ (SBD) = SO\)

Trong mặt phẳng \((AEN)\) gọi \(I = AM ∩ BN\) thì \(I\) thuộc \(AM\) và \(I\) thuộc \(BN\)

Mà \(AM ⊂ (SAC) => I ∈ (SAC), BN ⊂ ( SBD) => I ∈ (SBD)\). Như vậy \(I\) là điểm chung của \((SAC)\) và \((SBD)\) nên \(I\) thuộc giao tuyến \(SO\) của \((SAC)\) và \((SBD)\) tức là \(S, I, O\) thẳng hàng hay \(SO, AM, BN\) đồng quy.

Bạn đang xem bài tập, chương trình học môn Toán lớp 11 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)