Cho hàm số \(y = \frac{{x + 1}}{{x - 1}}\) có đồ thị (C).
Tính tích khoảng cách từ một điểm tùy ý thuộc (C) đến hai đường tiệm cận của nó.
+ Tìm tiệm cận đứng và tiệm cận ngang của (C).
+ Gọi M là một điểm thuộc (C): \(M\left( {x;\frac{{x + 1}}{{x - 1}}} \right) \in \left( C \right)\)
Advertisements (Quảng cáo)
+ Tính khoảng cách từ M đến hai đường tiệm cận, từ đó ta thu được tích của hai khoảng cách đó là một số.
Ta có \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{x + 1}}{{x - 1}} = + \infty \); \(\mathop {\lim }\limits_{x \to {1^ - }} \frac{{x + 1}}{{x - 1}} = - \infty \). Do đó đường thẳng \(x = 1\) là tiệm cận đứng của đồ thị hàm số;\(\mathop {\lim }\limits_{x \to + \infty } \frac{{x + 1}}{{x - 1}} = 1\). Do đó đường thẳng \(y = 1\) là tiệm cận ngang của đồ thị hàm số.
Giả sử điểm \(M\left( {x;\frac{{x + 1}}{{x - 1}}} \right) \in \left( C \right)\). Khi đó khoảng cách từ \(M\) đến đường thẳng \(x = 1\) là
\({d_1} = \left| {x - 1} \right|\), khoảng cách từ \(M\) đến đường thẳng \(y = 1\) là \({d_2} = \left| {\frac{{x + 1}}{{x - 1}} - 1} \right| = \frac{2}{{\left| {x - 1} \right|}}\).
Ta có \({d_1} \cdot {d_2} = \left| {x - 1} \right| \cdot \frac{2}{{\left| {x - 1} \right|}} = 2\). Vậy tích khoảng cách cần tìm là \(2\).