Gọi \(I\) là giao điểm giữa tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y = \frac{{2x + 3}}{{x - 2}}\). Chọn điểm \(K\left( {3;5} \right)\), tính hệ số góc của đường thẳng đi qua \(I\) và \(K\).
+ Tìm tiệm cận ngang và tiệm cận đứng của đồ thị hàm số.
+ Tìm tọa độ giao điểm I của hai tiệm cận đó.
Advertisements (Quảng cáo)
+ Tìm hệ số góc của đường thẳng đi qua I và K bằng công thức hệ số góc đã học.
Ta có \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{{2x + 3}}{{x - 2}} = + \infty \); \(\mathop {\lim }\limits_{x \to {2^ - }} \frac{{2x + 3}}{{x - 2}} = - \infty \). Do đó đường thẳng \(x = 2\) là tiệm cận đứng của đồ thị hàm số; \(\mathop {\lim }\limits_{x \to + \infty } \frac{{2x + 3}}{{x - 2}} = 2\). Do đó đường thẳng \(y = 2\) là tiệm cận ngang của đồ thị hàm số.
Suy ra giao điểm giữa tiệm cận đứng và tiệm cận ngang là \(I\left( {2;2} \right)\).
Hệ số góc của đường thẳng đi qua \(I\left( {2;2} \right)\) và \(K\left( {3;5} \right)\) có hệ số góc là \(\frac{{5 - 2}}{{3 - 2}} = 3\).