Cho hàm số \(y = f\left( x \right) = \frac{{x + 2}}{{x - 3}}\) có đồ thị \(\left( C \right)\). Gọi tổng khoảng cách từ một điểm \(\left( {x;y} \right) \in \left( C \right)\), với \(x > 3\) tới hai đường tiệm cận của \(\left( C \right)\) là \(g\left( x \right)\). Tìm các đường tiệm cận của đồ thị hàm số \(y = g\left( x \right)\).
+ Tìm các tiệm cận của đồ thị hàm số \(f\left( x \right)\).
+ Tìm tổng khoảng cách từ một điểm bất kỳ của đồ thị đến hai đường tiệm cận ta có được công thức của \(g\left( x \right)\), chú ý điều kiện \(x > 3\).
+ Tìm các tiệm cận của đồ thị hàm số \(g\left( x \right)\) bằng cách tính giới hạn.
Advertisements (Quảng cáo)
Ta có \(\mathop {\lim }\limits_{x \to {3^ + }} \frac{{x + 2}}{{x - 3}} = + \infty \); \(\mathop {\lim }\limits_{x \to {3^ - }} \frac{{x + 2}}{{x - 3}} = - \infty \). Do đó đường thẳng \(x = 3\) là tiệm cận đứng của đồ thị hàm số.
\(\mathop {\lim }\limits_{x \to + \infty } \frac{{x + 2}}{{x - 3}} = 1\). Do đó đường thẳng \(y = 1\) là tiệm cận ngang của đồ thị hàm số.
Giả sử điểm \(M\left( {x;y} \right) \in \left( C \right)\) suy ra \(M\left( {x;\frac{{x + 2}}{{x - 3}}} \right)\). Khi đó khoảng cách từ \(M\) đến đường thẳng \(x = 3\) là \({d_1} = \left| {x - 3} \right|\), khoảng cách từ \(M\) đến đường thẳng \(y = 1\) là \({d_2} = \left| {\frac{{x + 2}}{{x - 3}} - 1} \right| = \frac{5}{{\left| {x - 3} \right|}}\).
Ta có \(g\left( x \right) = {d_1} + {d_2} = \left| {x - 3} \right| + \frac{5}{{\left| {x - 3} \right|}} = x - 3 + \frac{5}{{x - 3}}\), vì \(x > 3\).
Ta sẽ tìm các đường tiệm cận của đồ thị hàm số \(g\left( x \right) = x - 3 + \frac{5}{{x - 3}}\).
Ta có \(\mathop {\lim }\limits_{x \to {3^ + }} \left( {x - 3 + \frac{5}{{x - 3}}} \right) = + \infty \); \(\mathop {\lim }\limits_{x \to {3^ - }} \left( {x - 3 + \frac{5}{{x - 3}}} \right) = - \infty \). Do đó đường thẳng \(x = 3\) là tiệm cận đứng của đồ thị hàm số; \(\mathop {\lim }\limits_{x \to + \infty } \left[ {\left( {x - 3 + \frac{5}{{x - 3}}} \right) - \left( {x - 3} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{5}{{x - 3}} = 0\), suy ra đường thẳng \(y = x - 3\) là tiệm cận xiên của đồ thị hàm số.
Vậy \(g\left( x \right)\) với \(x > 3\) có một tiệm cận đứng là đường thẳng \(x = 3\) và một tiệm cận xiên là đường thẳng \(y = x - 3\).