Một chiếc hộp dạng hình hộp chữ nhật có đáy là hình vuông và có thể tích là 2000 cm3. Các kích thước của chiếc hộp là bao nhiêu nếu muốn lượng vật liệu dùng để sản xuất chiếc hộp là nhỏ nhất?
+ Đặt độ dài cạnh đáy là x.
+ Biểu diễn chiều cao của hộp theo x.
+ Suy ra công thức tính diện tích toàn phần của hộp.
+ Tìm giá trị nhỏ nhất của diện tích đó.
Gọi cạnh đáy của hình hộp là x cm, x>0.
Advertisements (Quảng cáo)
Do thể tích chiếc hộp là 2000 cm3 nên chiều cao chiếc hộp là 2000x2 (cm).
Suy ra, tổng diện tích bề mặt chiếc hộp là S=2x2+4x⋅2000x2=2x2+8000x,x>0.
Lượng vật liệu dùng để sản xuất chiếc hộp nhỏ nhất khi tổng diện tích bề mặt chiếc hộp nhỏ nhất hay S đạt giá trị nhỏ nhất.
Ta có S′=(2x2+8000x)′=4x3−8000x2 khi đó S′=0⇔4x3−8000x2=0⇔x=103√2.
Lập bảng biến thiên:
Từ bảng biến thiên suy ra S đạt giá trị nhỏ nhất tại x=103√2, khi đó 2000x2=203√4.
Vậy khi hộp có cạnh đáy 103√2 cm và chiều cao là 203√4 cm thì lượng vật liệu dùng để sản xuất hộp nhỏ nhất.