Tìm các giá trị của tham số \(m\) sao cho hàm số \(y = {x^3} + m{x^2} + 3x + 2\) đồng biến trên \(\mathbb{R}\).
- Tìm tập xác định của hàm số
- Tính đạo hàm theo biến \(x\)(\(m\) là tham số).
- Hàm số đồng biến trên \(\mathbb{R}\) khi đạo hàm không âm với mọi \(x\) thuộc \(\mathbb{R}\), từ đó ta tìm \(m\) thỏa mãn \(y’ \le 0\forall x \in \mathbb{R}\) dựa trên kiến thức về dấu của tam thức bậc hai đã học.
Advertisements (Quảng cáo)
Tập xác định: \(\mathbb{R}\)
Ta có \(y’ = 3{x^2} + 2mx + 3\).
Hàm số đồng biến trên \(\mathbb{R}\) khi và chỉ khi \(y’ \ge 0\) với mọi \(x \in \mathbb{R}\) và \(y’ = 0\) chỉ tại hữu hạn điểm trong \(\mathbb{R}\). Khi đó điều kiện trên tương đương với \(\Delta \le 0\) (do \(y’\) là tam thức bậc hai có hệ số \(a = 3 > 0\)).
Ta có \(\Delta = 4{m^2} - 36 \le 0 \Leftrightarrow {m^2} - 9 \le 0 \Leftrightarrow m \in \left[ { - 3;3} \right].\)
Vậy hàm số đã cho đồng biến trên \(\mathbb{R}\) khi \(m \in \left[ { - 3;3} \right]\).