Hỏi khi số thức a thay đổi tùy ý thì các điểm của mặt phẳng phức biểu diễn các căn bậc hai của a + I vạch nên đường nào ?. Câu 4.15 trang 179 sách bài tập Giải tích 12 Nâng cao - Bài 2. Căn bậc hai của số phức phương trình bậc hai
Hỏi khi số thức a thay đổi tùy ý thì các điểm của mặt phẳng phức biểu diễn các căn bậc hai của a + i vạch nên đường nào ?
Giải
Viết \(z = x + yi\left( {x,y \in R} \right)\) thì
Advertisements (Quảng cáo)
\({z^2} = a + i \Leftrightarrow \left\{ \matrix{{x^2} - {y^2} = a \hfill \cr 2xy = 1 \hfill \cr} \right.\)
Phương trình \(2xy = 1\) chứng tỏ điểm M biểu diễn z phải thuộc hypebol \(y = {1 \over {2x}}\). Vì với mỗi điểm \(\left( {x,y} \right)\) của hylebol này, tìm được \(a = {x^2} - {y^2}\) nên M vạch nên toàn bộ hai nháy hypebol đó.