Trang chủ Lớp 12 SBT Toán lớp 12 (sách cũ) Bài 2.11 trang 51 sách bài tập (SBT) – Hình học 12:...

Bài 2.11 trang 51 sách bài tập (SBT) – Hình học 12: Một hình trụ có bán kính đáy bằng 50 cm và có chiều cao h = 50...

Một hình trụ có bán kính đáy bằng 50 cm và có chiều cao h = 50 cm.. Bài 2.11 trang 51 sách bài tập (SBT) – Hình học 12 - Bài 1. Khái niệm về mặt tròn xoay

Một hình trụ có bán kính đáy bằng 50 cm và có chiều cao h = 50 cm.

a) Tính diện tích xung quanh của hình trụ và thể tích của khối trụ được tạo nên.

b) Một đoạn thẳng có chiều dài 100 cm và có hai đầu mút nằm trên hai đường tròn đáy. Tính khoảng cách từ đoạn thẳng đó đến trục hình trụ.

Hướng dẫn làm bài:

a) Ta có công thức \({S_{xq}} = 2\pi rl\)   với r = 50 cm , l = 50 cm.

Do đó  \({S_{xq}} = 2\pi .50.50 = \pi .5000(c{m^2})\)  và \(V = \pi {r^2}h = 125000.\pi (c{m^3})\)

Advertisements (Quảng cáo)

b) Giả sử đoạn thẳng AB có điểm mút A nằm trên đường tròn đáy tâm O’ . Theo giả thiết ta có: AB = 100 cm. Giả sử IK là đoạn vuông góc chung của trục OO’ và đoạn AB với I thuộc OO’ và K thuộc AB.  Chiếu vuông góc đoạn  AB xuống mặt phẳng đáy chứa đường tròn tâm O’ , ta có A’ , H , B lần lượt là hình chiếu  của A, K, B.

Vì  \(KI \bot OO’\)  nên IK // mp(O’BA’) , do đó  O’H // IK  và O’H = IK.

Ta suy ra  \(O’H \bot AB\)  và \(O’H \bot AA’\) . Vậy \(O’H \bot A’B\)

Xét tam giác vuông AA’B  ta có  \(A’B = \sqrt {A{B^2} - AA{‘^2}}  = \sqrt {{{100}^2} - {{50}^2}}  = 50\sqrt 3 \)

Vậy \(IK = O’H = \sqrt {O'{A^2} - A'{H^2}}\)

\( = \sqrt {{{50}^2} - {{({{50\sqrt 3 } \over 2})}^2}}  = 50\sqrt {1 - {3 \over 4}}  = 25(cm)\)

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 12 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây: