Trang chủ Lớp 12 SBT Toán lớp 12 (sách cũ) Bài 2.6 trang 50 sách bài tập – Hình học 12: Cho...

Bài 2.6 trang 50 sách bài tập – Hình học 12: Cho khối nón có bán kính đáy r = 12 cm và có góc ở đỉnh là . Hãy...

Cho khối nón có bán kính đáy r = 12 cm và có góc ở đỉnh là . Hãy tính diện tích của thiết diện đi qua hai đường sinh vuông góc với nhau.. Bài 2.6 trang 50 sách bài tập (SBT) – Hình học 12. Bài 1. Khái niệm về mặt tròn xoay

Cho khối nón có bán kính đáy r = 12 cm và có góc ở đỉnh là \(\alpha  = {120^0}\). Hãy tính diện tích của thiết diện đi qua hai đường sinh vuông góc với nhau.

Hướng dẫn làm bài:

Advertisements (Quảng cáo)

Theo giả thiết ta có góc ở đỉnh của hình nón là \(\widehat {ASB} = \alpha  = {120^0}\). Gọi O là tâm của đường tròn đáy. Ta có: \(\widehat {ASO} = {60^0}\)  và \(\sin {60^0} = {{OA} \over {SA}} = {r \over l}\)   với l là độ dài đường sinh của hình nón.

Vậy \(l = {r \over {\sin {{60}^0}}} = {{12} \over {{{\sqrt 3 } \over 2}}} = {{24} \over {\sqrt 3 }}\)

Khi có hai đường sinh vuông góc với nhau ta có tam giác vuông có diện tích là \({1 \over 2}{l^2}\).  Do đó, diện tích của thiết diện là: \(S = {1 \over 2}{l^2} = {1 \over 2}.{{{{24}^2}} \over 3} = 96(c{m^2})\).

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 12 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây: