Trang chủ Lớp 12 SBT Toán lớp 12 (sách cũ) Bài 3.68 trang 134 sách bài tập – Hình học 12: Trong...

Bài 3.68 trang 134 sách bài tập – Hình học 12: Trong không gian Oxyz, cho bốn điểm A(6; -2; 3), B(0; 1; 6), C(2;...

Trong không gian Oxyz, cho bốn điểm A(6; -2; 3), B(0; 1; 6), C(2; 0 ; -1),
D(4; 1; 0). Gọi (S) là mặt cầu đi qua bốn điểm A, B, C, D. Hãy viết phương trình mặt phẳng tiếp xúc với mặt cầu (S) tại điểm A.
. Bài 3.68 trang 134 sách bài tập (SBT) – Hình học 12 - ĐỀ TOÁN TỔNG HỢP - CHƯƠNG III

Trong không gian Oxyz, cho bốn điểm  A(6; -2; 3), B(0; 1; 6), C(2; 0 ; -1), D(4; 1; 0). Gọi (S) là mặt cầu  đi qua bốn điểm A, B, C, D. Hãy viết phương trình mặt phẳng tiếp xúc với mặt cầu (S) tại điểm A.

Hướng dẫn làm bài:

Tâm I(x, y, z) của (S) có tọa độ là nghiệm của hệ phương trình

 \(\left\{ {\matrix{{I{A^2} = I{B^2}} \cr {I{A^2} = I{C^2}} \cr {I{A^2} = I{D^2}} \cr} } \right. \)

\(\Leftrightarrow  \left\{ {\matrix{{{{(x - 6)}^2} + {{(y + 2)}^2} + {{(z - 3)}^2} = {x^2} + {{(y - 1)}^2} + {{(z - 6)}^2}} \cr {{{(x - 6)}^2} + {{(y + 2)}^2} + {{(z - 3)}^2} = {{(x - 2)}^2} + {y^2} + {{(z + 1)}^2}} \cr {{{(x - 6)}^2} + {{(y + 2)}^2} + {{(z - 3)}^2} = {{(x - 4)}^2} + {{(y - 1)}^2} + {z^2}} \cr} } \right.\)

\( \Leftrightarrow  \left\{ {\matrix{{12x - 6y - 6z = 12} \cr {8x - 4y + 8z = 44} \cr {4x - 6y + 6z = 32} \cr} } \right.\)

Advertisements (Quảng cáo)

\(\Leftrightarrow  \left\{ {\matrix{{2x - y - z = 2} \cr {2x - y + 2z = 11} \cr {2x - 3y + 3z = 16} \cr} } \right. \Leftrightarrow \left\{ {\matrix{{x = 2} \cr {y = - 1} \cr {z = 3} \cr} } \right.\)

Vậy mặt cầu (S) có tâm I(2; -1; 3).

Mặt phẳng \((\alpha )\) tiếp xúc với (S) tại A nên  \((\alpha )\) có vecto pháp tuyến là \(\overrightarrow {IA}  = (4; - 1;0)\)

Phương trình mặt phẳng  \((\alpha )\) là

\(4(x – 6) – (y  +2) = 0\)  hay  \(4x – y – 26 = 0.\)

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 12 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây: