Trang chủ Lớp 12 SBT Toán lớp 12 (sách cũ) Bài 3.64 trang 133 sách bài tập (SBT) – Hình học 12:...

Bài 3.64 trang 133 sách bài tập (SBT) – Hình học 12: Trong không gian Oxyz, cho hai mặt phẳng...

Trong không gian Oxyz, cho hai mặt phẳng . Bài 3.64 trang 133 sách bài tập (SBT) – Hình học 12 - ĐỀ TOÁN TỔNG HỢP - CHƯƠNG III

Trong không gian Oxyz, cho hai mặt phẳng \((\beta )\) : x + 3ky – z + 2 = 0  và \((\gamma )\) : kx – y + z + 1 = 0

Tìm k để giao tuyến của \((\beta )\) và \((\gamma )\) vuông góc với mặt phẳng

                \((\alpha )  : x – y – 2z + 5 = 0.\)

Hướng dẫn làm bài:

Advertisements (Quảng cáo)

Ta có \(\overrightarrow {{n_\beta }}  = (1;3k; - 1)\)   và \(\overrightarrow {{n_\gamma }}  = (k; - 1;1)\) . Gọi \({d_k} = \beta  \cap \gamma \)

Đường thẳng dk vuông góc với giá của \(\overrightarrow {{n_\beta }} \) và \(\overrightarrow {{n_\gamma }} \) nên có vecto chỉ phương là: \(\overrightarrow a  = \overrightarrow {{n_\beta }}  \wedge \overrightarrow {{n_\gamma }}  = (3k - 1; - k - 1; - 1 - 3{k^2})\)

 Ta có:  \({d_k} \bot (\alpha ) \Leftrightarrow {{3k - 1} \over 1} = {{ - k - 1} \over { - 1}} = {{ - 1 - 3{k^2}} \over { - 2}} \Leftrightarrow  k = 1\).

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 12 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)