Cho hàm số y=x2+4x−1x−1
a) Khảo sát và vẽ đồ thị của hàm số.
b) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn [2; 4].
Bước 1. Tìm tập xác định của hàm số
Bước 2. Xét sự biến thiên của hàm số
− Tìm đạo hàm y’, xét dấu y’, xác định khoảng đơn điệu, cực trị (nếu có) của hàm số.
− Tìm giới hạn tại vô cực, giới hạn vô cực của hàm số và các đường tiệm cận của đồ thị hàm số (nếu có).
− Lập bảng biến thiên của hàm số.
Bước 3. Vẽ đồ thị của hàm số
− Xác định các điểm cực trị (nếu có), giao điểm của đồ thị với các trục toạ độ
− Vẽ các đường tiệm cận của đồ thị hàm số (nếu có).
− Vẽ đồ thị hàm số.
b) Lập bảng biến thiên và quan sát
Advertisements (Quảng cáo)
Tập xác định: D=R∖{1}
- Chiều biến thiên:
y′=x2−2x−3(x−1)2=0⇔[x=−1x=3
Trên các khoảng (−∞; -1), (3; +∞) thì y’ < 0 nên hàm số nghịch biến trên mỗi khoảng đó. Trên khoảng (-1; 3) thì y’ > 0 nên hàm số đồng biến trên khoảng đó.
- Giới hạn và tiệm cận:
lim
a = \mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} + 4x - 1}}{{{x^2} - x}} = 1;b = \mathop {\lim }\limits_{x \to + \infty } (\frac{{{x^2} + 4x - 1}}{{x - 1}} - x) = 5 nên y = x + 5 là tiệm cận xiên của đồ thị hàm số
\mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} + 4x - 1}}{{x - 1}} = + \infty ;\mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} + 4x - 1}}{{x - 1}} = - \infty nên x = 1 là tiệm cận đứng của đồ thị hàm số
Bảng biến thiên:
Ta có: y = 0 \Leftrightarrow \frac{{{x^2} + 4x - 1}}{{x - 1}} = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 2 - \sqrt 5 \\x = - 2 + \sqrt 5 \end{array} \right.
Vậy đồ thị của hàm số giao với trục Ox tại điểm ( - 2 - \sqrt 5 ; 0) và ( - 2 + \sqrt 5 ; 0)
b) Bảng biến thiên:
Từ bảng biến thiên, ta thấy \mathop {\min }\limits_{[2;4]} y = y(3) = 10 và \mathop {\max }\limits_{[2;4]} y = y(2) = 11