Trang chủ Lớp 12 SGK Toán 12 - Cùng khám phá Mục 1 trang 24, 25 Toán 12 tập 1 – Cùng khám...

Mục 1 trang 24, 25 Toán 12 tập 1 - Cùng khám phá: Tập xác định của hàm số \(f(x)\) là gì?...

Tập xác định: Đối với một hàm đa thức, tập xác định là toàn bộ các số thực \(R\). Hướng dẫn cách giải/trả lời HĐ1 - Giải mục 1 trang 24, 25 SGK Toán 12 tập 1 - Cùng khám phá - Bài 4. Khảo sát và vẽ đồ thị hàm số. Cho hàm số \(y = f(x) = - {x^3} + 3{x^2} - 4\) a) Tập xác định của hàm số \(f(x)\) là gì? b) Hàm số \(f(x)\) đồng biến, nghịch biến trên các khoảng nào?...

Hoạt động (HĐ) 1

Cho hàm số \(y = f(x) = - {x^3} + 3{x^2} - 4.\)

a) Tập xác định của hàm số \(f(x)\) là gì?

b) Hàm số \(f(x)\) đồng biến, nghịch biến trên các khoảng nào?

c) Hàm số \(f(x)\) đạt cực đại và cực tiểu tại những điểm nào?

d) Đồ thị hàm số \(y = f(x)\) có tiệm cận hay không?

Method - Phương pháp giải/Hướng dẫn/Gợi ý

a) Tập xác định: Đối với một hàm đa thức, tập xác định là toàn bộ các số thực \(R\).

b) Xét tính đơn điệu:

- Tính \({f^\prime }(x)\).

- Tìm các điểm mà tại đó \({f^\prime }(x)\) bằng 0.

- Lập bảng biến thiên.

c) Tìm cực trị: Từ bảng biến thiên, suy ra các điểm cực trị

d) Tiệm cận: Đối với hàm đa thức, không tồn tại tiệm cận ngang, đứng hay xiên.

Answer - Lời giải/Đáp án

a) Hàm số \(f(x) = - {x^3} + 3{x^2} - 4\) là một đa thức bậc ba, nên D=R.

b) Xét tính đơn điệu

Tính \({f^\prime }(x):{f^\prime }(x) = - 3{x^2} + 6x\)

Advertisements (Quảng cáo)

Tìm nghiệm khi \({f^\prime }(x) = 0\)

\({f^\prime }(x) = 0 \leftrightarrow - 3{x^2} + 6x = 0\)

\( \leftrightarrow - 3x(x - 2) = 0\)

\( \leftrightarrow x = 0\)hoặc \(x = 2\)

Tính giới hạn

\(\begin{array}{l}\mathop {\lim }\limits_{x \to + \infty } f(x) = \mathop {\lim }\limits_{x \to + \infty } \left( { - {x^3} + 3{x^2} - 4} \right) = \mathop {\lim }\limits_{x \to + \infty } \left[ { - {x^3}\left( {1 + \frac{3}{x} - \frac{4}{{{x^3}}}} \right)} \right] = - \infty \\\end{array}\)

\(\mathop {\lim }\limits_{x \to - \infty } f(x) = \mathop {\lim }\limits_{x \to - \infty } \left( { - {x^3} + 3{x^2} - 4} \right) = \mathop {\lim }\limits_{x \to - \infty } \left[ { - {x^3}\left( {1 + \frac{3}{x} - \frac{4}{{{x^3}}}} \right)} \right] = + \infty \)

Bảng biến thiên:

Kết luận:

- Hàm số nghịch biến trên các khoảng \(( - \infty ;0)\) và \((2; + \infty )\).

- Hàm số đồng biến trên khoảng \((0;2)\).

c) Tìm cực trị

Dựa vào bảng biến thiên, ta có thể kết luận:

- Hàm số đạt cực tiểu tại \(x = 0\)

- Hàm số đạt cực đại tại \(x = 2\)

d) Hàm số \(f(x)\) là một đa thức bậc ba, vì vậy nó không có tiệm cận ngang, đứng hay xiên. Đồ thị của hàm số không có tiệm cận.

Advertisements (Quảng cáo)