Hoạt động (HĐ) 1
Trong không gian Oxyz, cho hai vectơ \(\vec a = ({x_1};{y_1};{z_1})\) và \(\vec b = ({x_2};{y_2};{z_2})\).
a) Hãy biểu diễn các vectơ \(\vec a\), \(\vec b\) theo ba vectơ đơn vị \(\vec i\), \(\vec j\), \(\vec k\).
b) Tính \(\vec a + \vec b\) theo \(\vec i\), \(\vec j\), \(\vec k\), từ đó tìm tọa độ của vectơ \(\vec a + \vec b\).
- Mỗi vectơ trong không gian Oxyz với tọa độ (x,y,z) có thể được biểu diễn dưới dạng: \(\vec v = x\vec i + y\vec j + z\vec k\)
- Cộng các thành phần tương ứng của hai vectơ để tìm tổng: \(\vec a + \vec b = ({x_1} + {x_2})\vec i + ({y_1} + {y_2})\vec j + ({z_1} + {z_2})\vec k\)
a) Vectơ \(\vec a\) có tọa độ \(({x_1},{y_1},{z_1})\) nên nó có thể được biểu diễn theo các vectơ đơn vị \(\vec i,\vec j,\vec k\) như sau:
\(\vec a = {x_1}\vec i + {y_1}\vec j + {z_1}\vec k\)
Tương tự, vectơ \(\vec b\) có tọa độ \(({x_2},{y_2},{z_2})\) nên:
\(\vec b = {x_2}\vec i + {y_2}\vec j + {z_2}\vec k\)
b) Tổng của hai vectơ \(\vec a + \vec b\) là:
\(\vec a + \vec b = ({x_1}\vec i + {y_1}\vec j + {z_1}\vec k) + ({x_2}\vec i + {y_2}\vec j + {z_2}\vec k)\)
Kết hợp các thành phần tương ứng:
\(\vec a + \vec b = ({x_1} + {x_2})\vec i + ({y_1} + {y_2})\vec j + ({z_1} + {z_2})\vec k\)
Vậy tọa độ của vectơ \(\vec a + \vec b\) là \(({x_1} + {x_2};{y_1} + {y_2};{z_1} + {z_2})\).
Luyện tập (LT) 1
Trong không gian Oxyz, cho ba điểm A(5; -3; 0), B(2; 1; -1), C(4; 1; 2).
a) Tìm tọa độ của vectơ \(\vec u = 2\overrightarrow {AB} + \overrightarrow {AC} - 5\overrightarrow {BC} \).
b) Tìm điểm N sao cho \(2\overrightarrow {NA} = - \overrightarrow {NB} \)
a) Tính toạ độ của các vectơ \(\overrightarrow {AB} ,\overrightarrow {AC} \) và \(\overrightarrow {BC} \) sau đó thay vào biểu thức để xác định toạ độ của \(\overrightarrow u \).
b)
- Gọi toạ độ của N là (x,y,z).
- Biểu diễn \(\overrightarrow {NA} ,\overrightarrow {NB} \) theo x, y, z.
- Sử dụng điều kiện \(2\overrightarrow {NA} = - \overrightarrow {NB} \) để thiết lập hệ phương trình.
- Giải hệ phương trình để tìm toạ độ N.
a) Trước hết, chúng ta tính các vectơ \(\overrightarrow {AB} \), \(\overrightarrow {AC} \), và \(\overrightarrow {BC} \):
\(\overrightarrow {AB} = \vec B - \vec A = (2 - 5;1 + 3; - 1 - 0) = ( - 3;4; - 1)\)
\(\overrightarrow {AC} = \vec C - \vec A = (4 - 5;1 + 3;2 - 0) = ( - 1;4;2)\)
\(\overrightarrow {BC} = \vec C - \vec B = (4 - 2;1 - 1;2 + 1) = (2;0;3)\)
Bây giờ tính vectơ \(\vec u\):
\(\vec u = 2\overrightarrow {AB} + \overrightarrow {AC} - 5\overrightarrow {BC} \)
Thay các vectơ đã tính:
\(\vec u = 2( - 3;4; - 1) + ( - 1;4;2) - 5(2;0;3)\)
\(\vec u = ( - 6;8; - 2) + ( - 1;4;2) - (10;0;15)\)
\(\vec u = ( - 6 - 1 - 10;8 + 4 - 0; - 2 + 2 - 15)\)
\(\vec u = ( - 17;12; - 15)\)
Vậy tọa độ của vectơ \(\vec u\) là \(( - 17;12; - 15)\).
b) Điều kiện \(2\overrightarrow {NA} = - \overrightarrow {NB} \) có thể được viết lại như sau:
\(2\left( {\overrightarrow A - \overrightarrow N } \right) = \left( {\overrightarrow B - \overrightarrow N } \right)\)
Giải phương trình này:
\(2\overrightarrow A - 2\overrightarrow N = - \overrightarrow B + \overrightarrow N \)
Chuyển vế: \(3\vec N = 2\vec A + \vec B\)
Từ đó: \(\vec N = \frac{{2\vec A + \vec B}}{3}\)
Tính tọa độ của điểm N: \(\vec N = \frac{{2(5; - 3;0) + (2;1; - 1)}}{3}\)
\(\vec N = \frac{{(10; - 6;0) + (2;1; - 1)}}{3} = \frac{{(12; - 5; - 1)}}{3}\)
\(\vec N = \left( {4; - \frac{5}{3}; - \frac{1}{3}} \right)\)
Vậy tọa độ của điểm N là \(\left( {4; - \frac{5}{3}; - \frac{1}{3}} \right)\).
Luyện tập (LT) 2
Trong không gian Oxyz, cho ba điểm A(4; 1; -1), B(2; -1; 5), C(3; 0; 2). Chứng minh rằng ba điểm A, B, C thẳng hàng.
Ba điểm A, B, C thẳng hàng khi và chỉ khi vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \) cùng phương.
Tính các vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \):
\(\overrightarrow {AB} = \vec B - \vec A = (2 - 4; - 1 - 1;5 + 1) = ( - 2; - 2;6)\)
\(\overrightarrow {AC} = \vec C - \vec A = (3 - 4;0 - 1;2 + 1) = ( - 1; - 1;3)\)
Xét tỉ lệ:
\(\frac{{ - 2}}{{ - 1}} = 2,\quad \frac{{ - 2}}{{ - 1}} = 2,\quad \frac{6}{3} = 2\)
Advertisements (Quảng cáo)
Vì \(\frac{{\overrightarrow {AB} }}{{\overrightarrow {AC} }} = 2\), hai vectơ này cùng phương, nên ba điểm A, B, C thẳng hàng.
Vận dụng (VD) 1
Trong Hình 2.41, gốc tọa độ O là nơi máy bay xuất phát, trục Ox theo hướng Nam, trục Oy theo hướng Đông, trục Oz theo hướng thẳng đứng. Đơn vị trên các trục là km. Vào thời điểm 9h30 sáng, máy bay ở độ cao 9 km, cách điểm xuất phát theo hướng Nam 150 km và theo hướng Đông 300 km. Phi công để chế độ bay tự động, với vận tốc theo hướng Đông 750 km/h, độ cao không đổi. Biết rằng gió thổi theo hướng Bắc với vận tốc 10 m/s. Tìm tọa độ của máy bay lúc 10h30, với giả định là trong khoảng thời gian 9h30 đến 10h30, vận tốc và hướng của gió không thay đổi.
- Tìm tọa độ của máy bay tại thời điểm ban đầu.
- Tính vận tốc của máy bay theo các trục Ox, Oy (bao gồm cả ảnh hưởng của gió) và xác định vận tốc theo trục Oz.
- Sử dụng công thức \(x = {x_0} + {v_x} \times t\), \(y = {y_0} + {v_y} \times t\), \(z = {z_0} + {v_z} \times t\) để tính tọa độ máy bay sau thời gian \(t\).
- Xác định tọa độ ban đầu của máy bay tại thời điểm 9h30 sáng:
\({\rm{ }}({x_0},{y_0},{z_0}) = ( - 150,300,9)\)
- Tính ảnh hưởng của vận tốc máy bay và gió trong 1 giờ:
Tính vận tốc của máy bay theo trục \(x\) và \(y\) (do gió thổi theo hướng Bắc):
\({v_x} = - \frac{{10 \times 3600}}{{1000}} = - 36{\rm{ km/h }}\)
\({v_y} = 750{\rm{ km/h }}\)
Độ cao không đổi, do đó: \({v_z} = 0{\rm{ km/h}}\)
- Tính tọa độ sau 1 giờ bay:
\(x = {x_0} + {v_x} \times t = - 150 + ( - 36) \times 1 = - 186{\rm{ km}}\)
\(y = {y_0} + {v_y} \times t = 300 + 750 \times 1 = 1050{\rm{ km}}\)
\(z = {z_0} + {v_z} \times t = 9 + 0 = 9{\rm{ km}}\)
Vậy tọa độ của máy bay lúc 10h30 là: \((x,y,z) = ( - 186,1050,9)\)
Hoạt động (HĐ) 2
Trong không gian Oxyz, tam giác ABC có \(A\left( {{x_A},{y_A},{z_A}} \right)\), \(B\left( {{x_B},{y_B},{z_B}} \right)\), và \(C\left( {{x_C},{y_C},{z_C}} \right)\)
a) Gọi M là trung điểm của đoạn thẳng A B. Tìm tọa độ điểm M.
b) Gọi G là trọng tâm tam giác ABC. Tìm tọa độ điểm G.
- Công thức trung điểm: Tọa độ trung điểm M của đoạn thẳng nối hai điểm \(A\left( {{x_A},{y_A},{z_A}} \right)\) và \(B\left( {{x_B},{y_B},{z_B}} \right)\) được tính theo công thức:
\(M\left( {\frac{{{x_A} + {x_B}}}{2},\frac{{{y_A} + {y_B}}}{2},\frac{{{z_A} + {z_B}}}{2}} \right)\)
- Công thức trọng tâm: Tọa độ trọng tâm G của tam giác có các đỉnh \(A\left( {{x_A},{y_A},{z_A}} \right),B\left( {{x_B},{y_B},{z_B}} \right)\), và \(C\left( {{x_C},{y_C},{z_C}} \right)\) được tính theo công thức:
\(G\left( {\frac{{{x_A} + {x_B} + {x_C}}}{3},\frac{{{y_A} + {y_B} + {y_C}}}{3},\frac{{{z_A} + {z_B} + {z_C}}}{3}} \right)\)
a) Tọa độ điểm M là: \(M\left( {\frac{{{x_A} + {x_B}}}{2},\frac{{{y_A} + {y_B}}}{2},\frac{{{z_A} + {z_B}}}{2}} \right)\)
b) Tọa độ điểm G là: \(G\left( {\frac{{{x_A} + {x_B} + {x_C}}}{3},\frac{{{y_A} + {y_B} + {y_C}}}{3},\frac{{{z_A} + {z_B} + {z_C}}}{3}} \right)\)
Luyện tập (LT) 3
Trong không gian Oxyz, cho ba điểm \(A(1;3; - 5)\), \(M\left( {\frac{3}{2};2; - \frac{1}{2}} \right)\), \(G\left( {2;\frac{2}{3}; - \frac{2}{3}} \right)\).
a) Tìm tọa độ điểm B sao cho M là trung điểm của đoạn thẳng AB.
b) Tìm tọa độ điểm C sao cho G là trọng tâm của tam giác ABC.
- Tọa độ điểm B: Sử dụng công thức trung điểm:
\({x_B} = 2{x_M} - {x_A},\quad {y_B} = 2{y_M} - {y_A},\quad {z_B} = 2{z_M} - {z_A}\).
Thay tọa độ A và M để tìm B.
- Tọa độ điểm C: Sử dụng công thức trọng tâm:
\({x_C} = 3{x_G} - ({x_A} + {x_B}),\quad {y_C} = 3{y_G} - ({y_A} + {y_B}),\quad {z_C} = 3{z_G} - ({z_A} + {z_B})\).
Thay tọa độ A, B, và G để tìm C.
a) Ta có tọa độ điểm M là trung điểm của AB nên:
\(M\left( {\frac{{{x_A} + {x_B}}}{2},\frac{{{y_A} + {y_B}}}{2},\frac{{{z_A} + {z_B}}}{2}} \right)\)
Từ đó, tọa độ điểm B được xác định bằng cách giải phương trình:
\({x_B} = 2{x_M} - {x_A},\quad {y_B} = 2{y_M} - {y_A},\quad {z_B} = 2{z_M} - {z_A}\)
Thay toạ độ của điểm A, M vào:
\({x_B} = 2 \times \frac{3}{2} - 1 = 2,\quad {y_B} = 2 \times 2 - 3 = 1,\quad {z_B} = 2 \times \left( { - \frac{1}{2}} \right) - ( - 5) = 4\)
Vậy tọa độ điểm B là B(2; 1; 4).
b)
Vì G là trọng tâm của tam giác ABC, ta có:
\(G\left( {\frac{{{x_A} + {x_B} + {x_C}}}{3},\frac{{{y_A} + {y_B} + {y_C}}}{3},\frac{{{z_A} + {z_B} + {z_C}}}{3}} \right)\)
Từ đó, ta có hệ phương trình:
\({x_C} = 3{x_G} - ({x_A} + {x_B}),\quad {y_C} = 3{y_G} - ({y_A} + {y_B}),\quad {z_C} = 3{z_G} - ({z_A} + {z_B})\)
Thay toạ độ của điểm A, B, G vào:
\({x_C} = 3 \times 2 - (1 + 2) = 3, \quad {y_C} = 3 \times \frac{2}{3} - (3 + 1) = 0,\quad {z_C} = 3 \times \left( { - \frac{2}{3}} \right) - ( - 5 + 4) = - 3\)
Vậy tọa độ điểm C là C (3; 0; -3).