Trang chủ Lớp 12 SGK Toán 12 - Cùng khám phá Mục 2 trang 76, 77, 78, 79 Toán 12 tập 1 –...

Mục 2 trang 76, 77, 78, 79 Toán 12 tập 1 - Cùng khám phá: Chị Hương đang đứng ở vị trí A(20; 5; 20) và đi chuyển đến thang máy để xuống sảnh chờ đón khách...

Sử dụng định nghĩa toạ độ của một vectơ trong một hệ toạ độ để biểu diễn ab. Trả lời HĐ3, LT4, LT5, VD2 - Giải mục 2 trang 76, 77, 78, 79 SGK Toán 12 tập 1 - Cùng khám phá - Bài 4. Biểu thức tọa độ của các phép toán vecto. Trong không gian Oxyz, cho hai vectơ a=(x1,y1,z1)b=(x2,y2,z2). a) Biểu diễn ab qua các vectơ đơn vị i,j,k. b) Tính ab...

Hoạt động (HĐ) 3

Trong không gian Oxyz, cho hai vectơ a=(x1,y1,z1)b=(x2,y2,z2).

a) Biểu diễn ab qua các vectơ đơn vị i,j,k.

b) Tính ab.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

- Sử dụng định nghĩa toạ độ của một vectơ trong một hệ toạ độ để biểu diễn ab

- Sử dụng kết quả của câu a và tính chất của các vectơ đơn vị ab.

Answer - Lời giải/Đáp án

a) Biểu diễn vectơ

a=x1i+y1j+z1k

b=x2i+y2j+z2k

b) Tính ab.

Từ câu a ta có:

a.b=(x1i+y1j+z1k).(x2i+y2j+z2k)a.b=x1i(x2i+y2j+z2k)+y1j(x2i+y2j+z2k)+z1k(x2i+y2j+z2k)(*)

Sử dụng các tính chất của các vectơ đơn vị ta có:

i.i=1,j.j=1,k.k=1,i.k=0,i.j=0,k.j=0

Tính từng phần trong (*):

x1(i(x2i+y2j+z2k))=x1(x2(ii)+y2(ij)+z2(ik))=x1x2

y1(j(x2i+y2j+z2k))=y1(x2(ji)+y2(jj)+z2(jk))=y1y2

z1(k(x2i+y2j+z2k))=z1(x2(ki)+y2(kj)+z2(kk))=z1z2

Cộng tất cả các phần lại:

a.b=x1x2+y1y2+z1z2


Luyện tập (LT) 4

Trong không gian Oxyz, hình chóp S.ABC có S(3;1;3), A(2;3;1), B(4;3;3), C(2;3;1). M là trung điểm của BC. Tính góc giữa hai vectơ ABSM.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

- Tìm tọa độ các vectơ ABSM

- Tính tích vô hướng ABSM

- Tính độ dài của các vectơ ABSM

- Tính góc giữa hai vectơ

Answer - Lời giải/Đáp án

- Vectơ AB:

AB=BA=(42;33;31)=(2;0;2)

- Tọa độ của điểm M là trung điểm của BC:

M=(4+22;3+32;3+12)=(3;3;2)

- Vectơ SM:

SM=MS=(33;31;23)=(0;2;1)

- Tích vô hướng ABSM

ABSM=2×0+0×2+2×(1)=2

- Độ dài của vectơ AB:

|AB|=22+02+22=8=22

- Độ dài của vectơ SM:

|SM|=02+22+(1)2=5

Tính góc giữa hai vectơ:

cosθ=ABSM|AB|×|SM|=222×5=110

Vậy góc giữa hai vectơ ABSM là:

θ=arccos(110)


Luyện tập (LT) 5

Advertisements (Quảng cáo)

Trong không gian Oxyz, cho hình chóp S.ABC với

S(2;1;3),A(4;3;2),B(0;2;1),C(2;1+3;3).

a) Chứng minh rằng hai cạnh bên SA, SB bằng nhau và vuông góc với nhau.

b) Tính số đo của ^ASC (làm tròn kết quả đến hàng phần trăm).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

a) Sử dụng tính chất hai vectơ bằng nhau thì tích vô hướng của chúng bằng 0.

b) Tìm cos của ^ASC từ tích vô hướng của hai vectơ SA.SC sau đó suy ra giá trị của ^ASC

Answer - Lời giải/Đáp án

Vectơ SA có tọa độ:

SA=AS=(4(2),31,23)=(2,2,1)

Độ dài của vectơ SA là:

|SA|=(2)2+22+(1)2=4+4+1=9=3

Vectơ SB có tọa độ:

SB=BS=(0(2),21,13)=(2,1,2)

Độ dài của vectơ SB là:

|SB|=22+12+(2)2=4+1+4=9=3

Suy ra SA và SB bằng nhau.

Tích vô hướng của SASB là:

SASB=(2)(2)+2(1)+(1)(2)=4+2+2=0

SASB=0, nên SA và SB vuông góc với nhau.

Tích vô hướng của SASC là:

SASC=(2)(0)+2(3)+(1)(0)=23

Độ dài của vectơ SC là:

|SC|=02+(3)2+02=3

Góc giữa hai vectơ SASC được tính bằng công thức:

cos^ASC=SASC|SA||SC|=2333=2333=23

Suy ra:

^ASC=cos1(23)


Vận dụng (VD) 2

Một tòa nhà có dạng hình hộp chữ nhật với kích thước chiều dài 35 m, chiều rộng 15 m, chiều cao 28 m. Người ta định vị các vị trí trong tòa nhà dựa vào một hệ trục tọa độ Oxyz như Hình 2.42.

a) Chị Hương đang đứng ở vị trí A(20; 5; 20) và đi chuyển đến thang máy để xuống sảnh chờ đón khách. Biết vị trí vào thang máy có hoành độ x = 15 và tung độ y = 3. Hỏi chị Hương mất bao nhiêu giây để di chuyển, nếu từ vị trí A có thể đi thẳng đến cửa thang máy và chị ấy đi bộ với tốc độ 1,5 m/s?

b) Chị Hương vừa đặt một bộ phát sóng wifi trong phòng làm việc của mình tại vị trí có tọa độ (20; 5; 20). Do yêu cầu của công việc, sáng nay chị Hương phải đứng ở bàn lễ tân có tọa độ (5; 0; 0) để đón khách. Hỏi trong lúc đứng ở bàn lễ tân chờ khách thì điện thoại của chị có bắt được sóng wifi phát ra từ phòng làm việc của mình hay không? Biết rằng vùng phủ sóng bộ phát wifi nói trên có bán kính 30 mét.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

a) Để tính thời gian chị Hương di chuyển từ vị trí A(20; 5; 20) đến vị trí thang máy, ta cần tính khoảng cách giữa hai điểm trong không gian Oxyz bằng công thức:

d=(x2x1)2+(y2y1)2+(z2z1)2

Sau đó, thời gian di chuyển được tính bằng: t=dv với v là tốc độ di chuyển.

b) Để kiểm tra xem chị Hương có thể bắt được sóng wifi hay không, ta cần tính khoảng cách giữa hai điểm (20; 5; 20) và (5; 0; 0), và so sánh với bán kính phủ sóng của bộ phát wifi.

Answer - Lời giải/Đáp án

a) Tính khoảng cách giữa điểm A(20; 5; 20) và vị trí thang máy (15; 3; 0):

d=(1520)2+(35)2+(020)2=(5)2+(2)2+(20)2=25+4+400=42920.71m

Thời gian di chuyển:

t = \frac{{20.71}}{{1.5}} \approx 13.81 {\rm{ giây}}

b) Tính khoảng cách từ phòng làm việc (20; 5; 20) đến bàn lễ tân (5; 0; 0):

d = \sqrt {{{(20 - 5)}^2} + {{(5 - 0)}^2} + {{(20 - 0)}^2}} = \sqrt {{{15}^2} + {5^2} + {{20}^2}} = \sqrt {225 + 25 + 400} = \sqrt {650} \approx 25.5{\rm{ m}}

Vì khoảng cách này (25.5 m) nhỏ hơn bán kính phủ sóng của wifi (30 m), nên chị Hương có thể bắt được sóng wifi từ phòng làm việc.

Advertisements (Quảng cáo)