Trong không gian, cho hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) có cùng độ dài bằng 1. Biết rằng góc giữa hai vectơ đó là \({45^0}\), hãy tính:a) \(\overrightarrow a .\overrightarrow b \);b) \(\left( {\overrightarrow a + 3\overrightarrow b } \right).\left( {\overrightarrow a - 2\overrightarrow b } \right)\)c) \({\left( {\overrightarrow a + \overrightarrow b } \right)^2}\).
Sử dụng kiến thức về công thức xác định tích vô hướng của hai vectơ trong không gian để tính: Trong không gian, cho hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) đều khác \(\overrightarrow 0 \). Tích vô hướng của hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) là một số, kí hiệu là \(\overrightarrow a \cdot \overrightarrow b \), được xác định bởi công thức sau: \(\overrightarrow a \cdot \overrightarrow b = \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right| \cdot \cos \left( {\overrightarrow a ,\overrightarrow b } \right)\).
Advertisements (Quảng cáo)
a) \(\overrightarrow a \cdot \overrightarrow b = \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right| \cdot \cos \left( {\overrightarrow a ,\overrightarrow b } \right) = 1.1.\cos {45^0} = \frac{{\sqrt 2 }}{2}\)
b) \(\left( {\overrightarrow a + 3\overrightarrow b } \right).\left( {\overrightarrow a - 2\overrightarrow b } \right) = {\overrightarrow a ^2} + \overrightarrow a .\overrightarrow b - 6{\overrightarrow b ^2} = 1 + \frac{{\sqrt 2 }}{2} - 6.1 = - 5 + \frac{{\sqrt 2 }}{2}\)
c) \({\left( {\overrightarrow a + \overrightarrow b } \right)^2} = {\overrightarrow a ^2} + 2\overrightarrow a .\overrightarrow b + {\overrightarrow b ^2} = 1 + 2.\frac{{\sqrt 2 }}{2} + 1 = 2 + \sqrt 2 \)