Sử dụng kiến thức về khái niệm nguyên hàm của một hàm số để tính. Hướng dẫn trả lời Giải bài tập 4.23 trang 27 SGK Toán 12 tập 2 - Kết nối tri thức - Bài tập cuối chương 4 . Cho hàm số f(x) có đạo hàm f’(x) liên tục trên \(\mathbb{R}\), \(f\left( 1 \right) = 16\) và \(\int\limits_1^3 {f'
Câu hỏi/bài tập:
Cho hàm số f(x) có đạo hàm f’(x) liên tục trên \(\mathbb{R}\), \(f\left( 1 \right) = 16\) và \(\int\limits_1^3 {f’\left( x \right)dx} = 4\). Khi đó, giá trị của f(3) bằng
A. 20.
B. 16.
C. 12.
Advertisements (Quảng cáo)
D. 10.
Sử dụng kiến thức về khái niệm nguyên hàm của một hàm số để tính: Cho hàm số f(x) xác định trên một khoảng K (hoặc một đoạn, hoặc một nửa khoảng). Hàm số F(x) được gọi là một nguyên hàm của hàm số f(x) trên K nếu \(F’\left( x \right) = f\left( x \right)\) với mọi x thuộc K.
Vì \(\int\limits_1^3 {f’\left( x \right)dx} = 4\) nên \(f\left( 3 \right) - f\left( 1 \right) = 4\), suy ra: \(f\left( 3 \right) = 4 + f\left( 1 \right) = 4 + 16 = 20\)
Chọn A