Trang chủ Lớp 12 SGK Toán 12 - Kết nối tri thức Câu hỏi ? trang 8 Toán 12 Kết nối tri thức

Câu hỏi ? trang 8 Toán 12 Kết nối tri thức...

Sử dụng kiến thức về đạo hàm của hàm số lũy thừa để tính các đạo hàm. Trả lời Câu hỏi ? trang 8 SGK Toán 12 Kết nối tri thức - Bài 11. Nguyên hàm.

Câu hỏi/bài tập:

Bằng cách viết lại các hàm số sau dưới dạng lũy thừa \(y = {x^\alpha }\left( {x > 0} \right)\), hãy tính đạo hàm của các hàm số sau với \(x > 0\): \(y = \frac{1}{{{x^4}}},y = {x^{\sqrt 2 }},y = \frac{1}{{\sqrt[3]{x}}}\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Advertisements (Quảng cáo)

Sử dụng kiến thức về đạo hàm của hàm số lũy thừa để tính các đạo hàm: Hàm số lũy thừa \(y = {x^\alpha }\left( {\alpha \in \mathbb{R}} \right)\) có đạo hàm với mọi \(x > 0\) và \(\left( {{x^\alpha }} \right)’ = \alpha .{x^{\alpha - 1}}\)

Answer - Lời giải/Đáp án

Ta có: \(y = \frac{1}{{{x^4}}} = {x^{ - 4}}\) nên \(y’ = - 4{x^{ - 5}}\); \(y = {x^{\sqrt 2 }} = {x^{\frac{1}{2}}}\) nên \(y’ = \frac{1}{2}{x^{ - \frac{1}{2}}} = \frac{1}{{2\sqrt x }}\), \(y = \frac{1}{{\sqrt[3]{x}}} = {x^{\frac{{ - 1}}{3}}}\) nên \(y’ = \frac{{ - 1}}{3}{x^{\frac{{ - 4}}{3}}} = \frac{{ - 1}}{{3{x^{\frac{4}{3}}}}}\).

Advertisements (Quảng cáo)