Câu hỏi/bài tập:
a) Với \(\alpha \ne - 1\), tính đạo hàm của hàm số \(y = \frac{{{x^{\alpha + 1}}}}{{\alpha + 1}}\left( {x > 0} \right)\).
b) Cho hàm số \(y = \ln \left| x \right|\left( {x \ne 0} \right)\). Tính đạo hàm của hàm số này trong hai trường hợp: \(x > 0\) và \(x < 0\).
Sử dụng kiến thức về khái niệm nguyên hàm của một hàm số để tính: Cho hàm số f(x) xác định trên một khoảng K (hoặc một đoạn, hoặc một nửa khoảng). Hàm số F(x) được gọi là một nguyên hàm của hàm số f(x) trên K nếu \(F’\left( x \right) = f\left( x \right)\) với mọi x thuộc K.
Sử dụng kiến thức về họ nguyên hàm của một hàm số để tính: Để tìm nguyên hàm của hàm số f(x) trên K, ta chỉ cần tìm một nguyên hàm F(x) của f(x) trên K và khi đó \(\int {f\left( x \right)dx = F\left( x \right) + C} \), C là hằng số.
Advertisements (Quảng cáo)
Sử dụng kiến thức về đạo hàm của hàm số lũy thừa để tính các đạo hàm: Hàm số lũy thừa \(y = {x^\alpha }\left( {\alpha \in \mathbb{R}} \right)\) có đạo hàm với mọi \(x > 0\) và \(\left( {{x^\alpha }} \right)’ = \alpha .{x^{\alpha - 1}}\)
a) Vì \(y’ = {\left( {\frac{{{x^{\alpha + 1}}}}{{\alpha + 1}}} \right)’} = \frac{{\left( {\alpha + 1} \right){x^\alpha }}}{{\alpha + 1}} = {x^\alpha }\) với mọi \(x > 0\), \(\alpha \ne - 1\).
b) Ta có: \(y’ = \left( {\ln \left| x \right|} \right)’ = \frac{1}{{\left| x \right|}}\).
Với \(x > 0\) thì \(y’ = \frac{1}{x}\).
Với \(x < 0\) thì \(y' = \frac{1}{{ - x}}\).