Câu hỏi/bài tập:
Trở lại Ví dụ 1. Tính \(P\left( {A|\overline B } \right)\) bằng định nghĩa và bằng công thức.
Sử dụng kiến thức về định nghĩa xác suất có điều kiện để tính: Cho hai biến cố A và B. Xác suất của biến cố A, tính trong điều kiện biết rằng nếu biến cố B đã xảy ra, được gọi là xác suất của A với điều kiện B và kí hiệu là \(P\left( {A|B} \right)\).
Sử dụng kiến thức về công thức tính xác suất có điều kiện để tính: Cho hai biến cố A và B bất kì, với \(P\left( B \right) > 0\). Khi đó, \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}}\)
Cách 1: Bằng định nghĩa
Advertisements (Quảng cáo)
Nếu \(\overline B \) xảy ra tức là Bình lấy được viên bi đen. Khi đó, trong hộp còn lại 29 viên bi với 20 viên bi trắng và 9 viên bi đen. Vậy \(P\left( {A|\overline B } \right) = \frac{{20}}{{29}}\).
Cách 2: Bằng công thức
Bình có 30 cách chọn, An có 29 cách chọn một viên bi trong hộp. Do đó, \(n\left( \Omega \right) = 30.29\)
Bình có 10 cách chọn một viên bi đen, An có 29 cách chọn từ 29 viên bi còn lại.
Do đó, \(n\left( {\overline B } \right) = 10.29\) và \(P\left( {\overline B } \right) = \frac{{n\left( {\overline B } \right)}}{{n\left( \Omega \right)}}\)
Bình có 10 cách chọn một viên bi đen, An có 20 cách chọn một viên bi trắng. Do đó, \(n\left( {A\overline B } \right) = 10.20\) và \(P\left( {\overline B } \right) = \frac{{n\left( {A\overline B } \right)}}{{n\left( \Omega \right)}}\)
Vậy \(P\left( {A|\overline B } \right) = \frac{{n\left( {A\overline B } \right)}}{{n\left( {\overline B } \right)}} = \frac{{10.20}}{{10.29}} = \frac{{20}}{{29}}\)