Trang chủ Lớp 12 SGK Toán 12 - Kết nối tri thức Xét hình trụ có bán kính đáy R, có trục là trục...

Xét hình trụ có bán kính đáy R, có trục là trục hoành Ox...

Sử dụng kiến thức về thể tích hình trụ để tính. Hướng dẫn trả lời Câu hỏi Hoạt động 3 trang 22 SGK Toán 12 Kết nối tri thức - Bài 13. Ứng dụng hình học của tích phân.

Câu hỏi/bài tập:

Xét hình trụ có bán kính đáy R, có trục là trục hoành Ox, nằm giữa hai mặt phẳng \(x = a\) và \(x = b\left( {a < b} \right)\) (H.4.20).

a) Tính thể tích V của hình trụ.

b) Tính diện tích mặt cắt S(x) khi cắt hình trụ bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ là x \(\left( {a \le x \le b} \right)\). Từ đó tính \(\int\limits_a^b {S\left( x \right)dx} \) và so sánh với V.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Advertisements (Quảng cáo)

Sử dụng kiến thức về thể tích hình trụ để tính: Hình trụ có bán kính đáy R và chiều cao h thì có thể tích là: \(V = \pi {R^2}h\)

Answer - Lời giải/Đáp án

a) Thể tích V của hình trụ là: \(V = \pi {R^2}h = \pi {R^2}\left( {b - a} \right)\) (h là chiều cao của hình trụ)

b) Diện tích mặt cắt S(x) khi cắt hình trụ bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ là x là: \(S\left( x \right) = \pi {R^2}\).

Ta có: \(\int\limits_a^b {S\left( x \right)dx} = \int\limits_a^b {\pi {R^2}dx} = \pi {R^2}x\left| \begin{array}{l}b\\a\end{array} \right. = \pi {R^2}\left( {b - a} \right)\). Do đó, \(V = \int\limits_a^b {S\left( x \right)dx} \).

Advertisements (Quảng cáo)