Trang chủ Lớp 12 Toán lớp 12 Nâng cao (sách cũ) Bài 10 trang 81 SGK Hình học 12 Nâng cao, Cho ba...

Bài 10 trang 81 SGK Hình học 12 Nâng cao, Cho ba điểm Chứng minh A, B, C không thẳng hàng. b) Tính chu vi và diện tích tam giác ABC. c) Tính độ dài đường cao của tam giác ABC kẻ từ đỉnh ...

Cho ba điểm
a) Chứng minh A, B, C không thẳng hàng.
b) Tính chu vi và diện tích tam giác ABC.
c) Tính độ dài đường cao của tam giác ABC kẻ từ đỉnh A.
d) Tính các góc của tam giác ABC.. Bài 10 trang 81 SGK Hình học 12 Nâng cao - Bài 1. Hệ tọa độ trong không gian

Bài 10. Cho ba điểm \(A\left( {1;0;0} \right)\,;\,B\left( {0;0;1} \right)\,;\,C\left( {2;1;1} \right)\)
a) Chứng minh A, B, C không thẳng hàng.
b) Tính chu vi và diện tích tam giác ABC.
c) Tính độ dài đường cao của tam giác ABC kẻ từ đỉnh A.
d) Tính các góc của tam giác ABC.

a) Ta có \(\overrightarrow {BA}  = \left( {1;0; - 1} \right),\overrightarrow {BC}  = \left( {2;1;0} \right)\).
Vì \({1 \over 2} \ne {0 \over 1} \Rightarrow \overrightarrow {BA} ,\overrightarrow {BC} \) không cùng phương do đó A, B, C thẳng hàng.
b) Ta có

Advertisements (Quảng cáo)

\(\eqalign{
& AB = \sqrt {{1^2} + {0^2} + {{\left( { - 1} \right)}^2}} = \sqrt 2 \cr
& BC = \sqrt {{2^2} + {1^2} + {0^2}} = \sqrt 5 \cr
& AC = \sqrt {{1^2} + {1^2} + {1^2}} = \sqrt 3 \cr} \)

Vậy chu vi tam giác ABC bằng \(\sqrt 2  + \sqrt 3  + \sqrt 5 \).
Ta có \(B{C^2} = A{B^2} + A{C^2} \Rightarrow \Delta ABC \) vuông tại A nên có diện tích \(S = {1 \over 2}AB.AC = {{\sqrt 6 } \over 2}\)
c) Gọi \({h_a}\) là độ dài đường cao kẻ từ A ta có:
\({S_{ABC}} = {1 \over 2}BC.{h_a} \Rightarrow {h_a} = {{2{S_{ABC}}} \over {BC}} = {{\sqrt 6 } \over {\sqrt 5 }} = {{\sqrt {30} } \over 5}\)
d) Vì tam giác ABC vuông tại A nên:

\(\cos B = {{AB} \over {BC}} = {{\sqrt 2 } \over {\sqrt 5 }} = {{\sqrt {10} } \over 5}\,;\,\cos C = {{AC} \over {BC}} = {{\sqrt 3 } \over {\sqrt 5 }} = {{\sqrt {15} } \over 5}\)

Bạn đang xem bài tập, chương trình học môn Toán lớp 12 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây: