Bài 19. Cho một tam giác đều \(ABC\) cạnh \(a\). Người ta dựng một hình chữ nhật \(MNPQ\) có cạnh \(MN\) nằm trên cạnh \(BC\), hai đỉnh \(P\) và \(Q\) theo thứ tự nằm trên hai cạnh \(AC\) và \(AB\) của tam giác. Xác định vị trí của điểm \(M\) sao cho hình chữ nhật có diện tích lớn nhất và tìm giá trị lớn nhất đó.
Đặt \(BM = x\left( {0 < x < {a \over 2}} \right)\)
Gọi \(H\) là trung điểm \(BC\) ta có \(AH = {{a\sqrt 3 } \over 2}\)
\(\Delta BMQ = \Delta CNP\,\,\, \Rightarrow BM = NC = x\,\,\, \Rightarrow MN = a - 2x\)
\(QM//AH\) nên \({{QM} \over {AH}} = {{BM} \over {BH}} \Rightarrow QM = {{AH.BM} \over {BH}} = {{{{a\sqrt 3 } \over 2}.x} \over {{a \over 2}}} = x\sqrt 3 \)
Advertisements (Quảng cáo)
Diện tích hình chữ nhật \(MNPQ\) là
\(S\left( x \right) = MN.QM = \left( {a - 2x} \right).x\sqrt 3 = \sqrt 3 \left( {ax - 2{x^2}} \right)\)
Ta tìm giá trị lớn nhất của \(S\left( x \right)\) trên khoảng \(\left( {0;{a \over 2}} \right)\)
Ta có : \(S’\left( x \right) = \sqrt 3 \left( {a - 4x} \right);S’\left( x \right) = 0 \Leftrightarrow x = {a \over 4};S\left( {{a \over 4}} \right) = {{\sqrt 3 } \over 8}{a^2}\)
Vậy \(S\left( x \right)\) đạt giá trị lớn nhất tại điểm \(x = {a \over 4}\) và giá trị lớn nhất của diện tích hình chữ nhật là: \(\mathop {\max \,\,\,S\left( x \right)}\limits_{x \in \left( {0;{a \over 2}} \right)} = S\left( {{a \over 4}} \right) = {{\sqrt 3 } \over 8}{a^2}\)