Bài 24
Giải các phương trình sau trên C và biểu diễn hình hợp tập hợp các nghiệm của mỗi phương trình (trong mặt phẳng phức):
a)\({z^3} + 1 = 0\);
b) \({z^4} - 1 = 0\);
c) \({z^4} + 4 = 0\);
d) \(8{z^4} + 8{z^3} = z + 1\).
Giải
a) \({z^3} + 1 = 0 \Leftrightarrow \left( {z + 1} \right)\left( {{z^2} - z + 1} \right) = 0\)
Nghiệm của \(z + 1 = 0\) là \({z_1} = - 1\)
\({z^2} - z + 1 = 0 \Leftrightarrow {\left( {z - {1 \over 2}} \right)^2} = - {3 \over 4} = {\left( {{{\sqrt 3 } \over 2}i} \right)^2}\)
\( \Leftrightarrow \left[ \matrix{ z = {1 \over 2} + {{\sqrt 3 } \over 2}i = {z_2} \hfill \cr z = {1 \over 2} - {{\sqrt 3 } \over 2}i = {z_3} \hfill \cr} \right.\)
Vậy \(S = \left\{ { - 1;{1 \over 2} + {{\sqrt 3 } \over 2}i;{1 \over 2} - {{\sqrt 3 } \over 2}i} \right\}\)
b) \({z^4} - 1 = 0 \Leftrightarrow \left( {{z^2} - 1} \right)\left( {{z^2} + 1} \right) = 0\)
\( \Leftrightarrow \left[ \matrix{ {z^2} - 1 = 0 \hfill \cr {z^2} + 1 = 0 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{ z = \pm 1 \hfill \cr z = \pm i \hfill \cr} \right.\)
Advertisements (Quảng cáo)
Phương trình có 4 nghiệm \({z_1} = i,{z_2} = - i,{z_3} = 1,{z_4} = - 1\)
c) \({z^4} + 4 = 0 \Leftrightarrow \left( {{z^2} + 2i} \right)\left( {{z^2} - 2i} \right) = 0\)
Nghiệm của \({z^2} + 2i = 0\) là các căn bậc hai của -2i, đó là \({z_1} = 1 - i\),\({z_2} = - 1 + i\)
Nghiệm của \({z^2} - 2i = 0\) là các căn bậc hai của 2i, đó là \({z_3} = 1 + i\),\({z_4} = - 1 - i\)
Vậy \({z^4} + 4 = 0\) có bốn nghiệm \({z_1},{z_2},{z_3},{z_4}\).
d) \(8{z^4} + 8{z^3} = z + 1 \Leftrightarrow \left( {z + 1} \right)\left( {8{z^3} - 1} \right) = 0\)
\( \Leftrightarrow \left( {z + 1} \right)\left( {2z - 1} \right)\left( {4{z^2} + 2z + 1} \right) = 0\)
Nghiệm của \(z + 1 = 0\) là \({z_1} = - 1\)
Nghiệm của \(2z - 1 = 0\) là \({z_2} = {1 \over 2}\)
Nghiệm của \(4{z^2} + 2z + 1 = 0\) hay \({\left( {2z + {1 \over 2}} \right)^2} + {3 \over 4} = 0\)là \({z_3} = - {1 \over 4} + {{\sqrt 3 } \over 4}i\) và\({z_4} = - {1 \over 4} - {{\sqrt 3 } \over 4}i\)
Vậy phương trình đã cho có bốn nghiệm\({z_1},{z_2},{z_3},{z_4}\)