Trang chủ Lớp 12 Toán lớp 12 Nâng cao (sách cũ) Bài 34 trang 207 SGK giải tích 12 nâng cao, Tìm các...

Bài 34 trang 207 SGK giải tích 12 nâng cao, Tìm các số nguyên dương n để...

Tìm các số nguyên dương n để. Bài 34 trang 207 SGK giải tích 12 nâng cao - Bài 3. Dạng lượng giác của số phức và ứng dụng

Bài 34. Cho số phức \({\rm{w}} =  - {1 \over 2}\left( {1 + i\sqrt 3 } \right)\). Tìm các số nguyên dương n để \({{\rm{w}}^n}\) là số thực. Hỏi có chăng một số nguyên dương m để \({{\rm{w}}^m}\) là số ảo?

Ta có: \(\rm{w}  =  - {1 \over 2} - {{\sqrt 3 } \over 2}i = \cos {{4\pi } \over 3} + i\sin {{4\pi } \over 3}\)

Suy ra \({\rm{w}^n} = \cos {{4\pi n} \over 3} + i\sin {{4\pi n} \over 3}\)

\({\omega ^n}\) là số thực \( \Leftrightarrow \sin {{4n\pi } \over 3} = 0 \Leftrightarrow {{4n\pi } \over 3} = k\pi \,\,\left( {k \in \mathbb Z} \right)\)

Advertisements (Quảng cáo)

\( \Leftrightarrow 4n = 3k \Leftrightarrow n\) chia hết cho 3 (n nguyên dương)

\({\rm{w} ^m}\) (m nguyên dương) là số ảo \( \Leftrightarrow \cos {{4m\pi } \over 3} = 0 \Leftrightarrow {{4m\pi } \over 3} = {\pi  \over 2} + k\pi \,\,\left( {k \in \mathbb Z} \right)\)

\( \Leftrightarrow 8m = 6k + 3\) (vô lí vì vế trái chẵn, vế phải lẻ).

Vậy không có số nguyên dương m để  \({\rm{w} ^m}\) là số ảo.

Bạn đang xem bài tập, chương trình học môn Toán lớp 12 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây: