Trang chủ Lớp 12 Toán lớp 12 Nâng cao (sách cũ) Câu 12 trang 213 SGK Giải tích 12 Nâng cao, Tìm nguyên...

Câu 12 trang 213 SGK Giải tích 12 Nâng cao, Tìm nguyên hàm của mỗi hàm số sau...

Tìm nguyên hàm của mỗi hàm số sau. Câu 12 trang 213 SGK Giải tích 12 Nâng cao - Câu hỏi và bài tập

Tìm nguyên hàm của mỗi hàm số sau

a) y = x3 (1 + x4)3

b) y = cosx sin2x

c) \(y = {x \over {{{\cos }^2}x}}\)

a) Đặt u = 1 + x4

\(\eqalign{
& \Rightarrow du = 4{x^3}dx \Rightarrow {x^3}dx = {{du} \over 4} \cr
& \int {{x^3}(1 + {x^4})dx = {1 \over 4}} \int {{u^3}du} = {{{u^4}} \over {16}} + c \cr&= {1 \over {16}}{(1 + {x^4})^4} + C \cr} \) 

b) Ta có:

Advertisements (Quảng cáo)

\(\int {\sin 2x.cosxdx = {1 \over 2}} \int {(\sin3x +\sin x)dx}\)

\(=  - {1 \over 6} \cos 3x - {1 \over 2}\cos x + C\)

c) Ta có:

Đặt 

\(\left\{ \matrix{
u = x \hfill \cr
dv = {{dx} \over {{{\cos }^2}x}} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
du = dx \hfill \cr
v = \tan x \hfill \cr} \right.\)

Do đó:

\(\eqalign{
& \int {{x \over {{{\cos }^2}x}}} dx = x\tan x - \int {\tan xdx } \cr
& = x\tan x + \int {{{d(cosx)} \over {cosx}}} = x\tan x + \ln |cosx| + C \cr} \)

Bạn đang xem bài tập, chương trình học môn Toán lớp 12 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)