Trang chủ Lớp 12 Toán lớp 12 (sách cũ) Bài 10 trang 49 sách giáo khoa hình học lớp 12: Bài...

Bài 10 trang 49 sách giáo khoa hình học lớp 12: Bài 2. Mặt cầu...

Bài 10 trang 49 sách giáo khoa hình học lớp 12: Bài 2. Mặt cầu. Bài 10. Cho hình chóp S.ABC có bốn đỉnh đếu nằm trên một mặt cầu, SA = a, SB = b, SC = c và ba cạnh SA, SB, SC đôi một vuông góc. Tính diện tích mặt cầu và thể tích khối cầu được tạo bởi mặt cầu đó

Bài 10. Cho hình chóp \(S.ABC\) có bốn đỉnh đếu nằm trên một mặt cầu, \(SA = a, SB = b, SC = c\) và ba cạnh \(SA, SB, SC\) đôi một vuông góc. Tính diện tích mặt cầu và thể tích khối cầu được tạo bởi mặt cầu đó

Gọi \(I\) là tâm cầu ngoại tiếp hình chóp tam giác \(S.ABC\). Hạ \(IJ\) vuông góc \((SAB)\), vì \(J\) cách đều \(3\) điểm \(S, A, B\) nên \(J\) cũng cách đều \(3\) điểm \(S, A, B\).

Vì tam giác \(SAB\) vuông đỉnh \(S\) nên \(J\) là trung điểm của \(AB\).

Ta có \(SJ ={1 \over 2}AB = {1 \over 2}\sqrt {{a^2} + {b^2}}\)

Do \(SC\) vuông góc \((SAB)\) nên \(IJ // SC\).

Gọi \(H\) là trung điểm \(SC\), ta có \(SH = IJ = {c \over 2}\).

Advertisements (Quảng cáo)

Do vậy, \(I{S^2} = I{J^2} + S{J^2} = {{({a^2} + {b^2} + {c^2})} \over 4}\) và  bán kính hình cầu ngoại tiếp \(S.ABC\) là 

\(r = IS = {1 \over 2}\sqrt {{a^2} + {b^2} + {c^2}} \)

Diện tích mặt cầu là:

\(S = 4\pi {r^2} = \pi ({a^2} + {b^2} + {c^2})\)

Thể tích khối cầu là :
\(V = {4 \over 3}\pi {r^3} = {1 \over 6}\pi {\left( {{a^2} + {b^2} + {c^2}} \right)^{{3 \over 2}}}\).

 

 
 

Bạn đang xem bài tập, chương trình học môn Toán lớp 12 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây: