Bài 5. Tính:
a) ∫30x√1+xdx
b) ∫6411+√x3√xdx
c) ∫20x2e3xdx
d) ∫π0√1+sin2xdx
a) Đặt t=√1+x , ta được: x=t2−1,dx=2tdt
Khi x=0 thì t=1, khi x=3 thì t=2
Do đó:
∫30x√1+xdx=∫21t2−1t.2tdt=2∫21(t2−1)dt
=2(t33−t)|21=2(83−2−13+1)=83
b)
Ta có:
Advertisements (Quảng cáo)
∫6411+√x3√xdx=∫6411+x12x13dx=∫641(x−13+x16)dx
=(32x23+67x76)|641=183914
c) Ta có:
∫20x2e3xdx=13∫20x2de3x=13x2e3x|20
−23∫20xe3xdx=43e6−29(xe3x)|20+227∫20e3xd(3x)
=43e6−49e6+227e3x|20=227(13e6−1)
d)
Ta có:
√1+sin2x=√sin2x+cos2x+2sinxcosx
=|sinx+cosx|=√2|sin(x+π4)|
={√2sin(x+π4),x∈[0,3π4]√2sin(x+π4),X∈[3π4,π]
Do đó:
∫π0√1+sin2xdx=√2∫3π40sin(x+π4)d(x+π4)−√2∫π3π4sin(x+π4)d(x+π4) =−√2cos(x+π4)|3π40+√2(x+π4)|π3π4=2√2