Trang chủ Lớp 12 Toán lớp 12 (sách cũ) Bài 8 trang 100 Hình học 12: Trong không gian Oxyz cho...

Bài 8 trang 100 Hình học 12: Trong không gian Oxyz cho các điểm A(1; 0 ; -1), B(3 ; 4 ; -2)...

Bài 8 trang 100 SGK Hình học 12: ÔN TẬP CUỐI NĂM - HÌNH HỌC 12. Trong không gian Oxyz cho các điểm A(1; 0 ; -1), B(3 ; 4 ; -2), C(4 ; -1; 1), D(3 ; 0 ;3).

a) Chứng minh rằng A, B, C, D không đồng phẳng.

Bài 8. Trong không gian \(Oxyz\) cho các điểm \(A(1; 0 ; -1), B(3 ; 4 ; -2), C(4 ; -1; 1), D(3 ; 0 ;3)\).

a) Chứng minh rằng \(A, B, C, D\) không đồng phẳng.

b) Viết phương trình mặt phẳng \((ABC)\) và tính khoảng cách từ \(D\) đến \((ABC)\).

c) Viết phương trình mặt cầu ngoại tiếp tứ diện \(ABCD\).

d) Tính thể tích tứ diện \(ABCD\).

a) Ta có: \(\overrightarrow {AB} = (2; 4; 3)\).

Phương trình tham số của đường thẳng \(AB\):

\(\left\{ \matrix{
x = 1 + 2t \hfill \cr
y = 4t \hfill \cr
z = - 1 + 3t \hfill \cr} \right.\)

\(\overrightarrow {CD} = (-1; 1; 2)\). Phương trình tham số của \(CD\):

\(\left\{ \matrix{
x = 4 - k \hfill \cr
y = - 1 + k \hfill \cr
z = 1 + 2k \hfill \cr} \right.\)

Do \(\overrightarrow {AB}  \ne k\overrightarrow {CD} \) nên hai đường thẳng \(AB, CD\) không cùng phương, chúng cắt nhau hoặc chéo nhau.

Xét hệ:

\(\left\{ \matrix{
1 + 3t = 4 - t'(1) \hfill \cr
4t = - 1 + t'(2) \hfill \cr
- 1 + 3t = 1 + 2t'(3) \hfill \cr} \right.\)

Từ hai phương trình đầu, ta có: \(t = {2 \over 7}\); \(t’ = {{15} \over 7}\)

Hai giá trị này không thoả mãn phương trình (3) nên hệ vô nghiệm, suy ra \(AB\) và \(CD\) không cắt nhau.

Vậy \(AB\) và \(CD\) là hai đường thẳng chéo nhau hay bốn điểm \(A, B, C, D\) không đồng phẳng.

b) Ta có \(\overrightarrow {AB} = (2; 4; -1)\), \(\overrightarrow {AC} = (3; -1; 2)\)

Gọi \(\overrightarrow n \) là vectơ pháp tuyến của mặt phẳng \((ABC)\)

\(\overrightarrow n  = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] =  (7; -7; -14)\)

phương trình mp \((ABC)\): \(7(x - 1) - 7(y - 0) -14(z + 1) = 0\)

Advertisements (Quảng cáo)

\(7x - 7y -14z - 21 = 0   \Leftrightarrow x - y - 2z - 3 = 0\).

\(d(D, (ABC))\) =\({{\left| {1.3 - 0 - 2.3 - 3} \right|} \over {\sqrt {{1^2} + {1^2} + {{( - 2)}^2}} }} = {6 \over {\sqrt 6 }} = \sqrt 6 \)

c) Phương trình tổng quát của mặt cầu:

\({x^2} + {y^2} + {z^2} + 2Ax + 2By + 2Cz + D = 0\)

Mặt cầu đi qua \(A(1; 0; -1)\) ta có:

\({1^2} + {0^2} + {( - 1)^2} + 2A - 2C + D = 0\)

\( \Leftrightarrow 2A - 2C + D + 2 = 0 \)               (1)

Tương tự, mặt cầu đi qua \(B, C, D\) cho ta các phương trình:

\(2A + 8B - 2C + D + 18 = 0 \)                                 (2)

\(4A + 8B + 6C + D + 29 = 0 \)                                (3)

\(4A + 4B - 2C + D + 9 = 0  \)                                  (4)

Hệ bốn phương trình (1), (2), (3), (4) cho ta: \(A = 3; B = 2; C = {1 \over 2}; D = 3\). Ta được tâm của mặt cầu \(I\)\(\left( { - 3; - 2; - {1 \over 2}} \right)\) và bán kính:

\(R = 3^2+ 2^2 + {\left( {{1 \over 2}} \right)^2} - 3 = {{41} \over 4} \Rightarrow R = {{\sqrt {41} } \over 2}\)

Phương trình mặt cầu đi qua bốn điểm \(A, B, C, D\) là:

\((x - 3)^2 + (y - 2)^2 + {\left( {z - {1 \over 2}} \right)^2} = {{41} \over 4}\)

d) Ta có \(\overrightarrow {AB} = (2; 4; -1)\) \( \Rightarrow AB^2= 4 + 16 + 1 = 21\)\( \Rightarrow AB = \sqrt {21} \)

                \(\overrightarrow {AC}  = (3; -1; 2)\) \( \Rightarrow AC^2 = 9 + 1 + 4 = 14\)\( \Rightarrow AC = \sqrt {14} \)

Xét \(\overrightarrow {AB} .\overrightarrow {AC} = 2.3 + 4.(-1) + (-1).2 = 0\)\( \Rightarrow \overrightarrow {AB}  \bot \overrightarrow {AC} \)

Tam giác \(ABC\) vuông tại đỉnh \(A\), có diện tích:

\({S_{ABC}} = {1 \over 2}AB.AC = {1 \over 2}\sqrt {21} .\sqrt {14} \)

Thể tích tứ diện \(ABCD\):

\({V_{ABCD}} = {1 \over 3}.{S_{ABC}}.DH = {1 \over 3}.{1 \over 2}.\sqrt {21} .\sqrt {14} .\sqrt 6  = 7\) (Đvdt)

Bạn đang xem bài tập, chương trình học môn Toán lớp 12 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây: