Trang chủ Lớp 12 Toán lớp 12 (sách cũ) Câu 1 trang 126 Giải tích 12: Phát biểu định nghĩa nguyên...

Câu 1 trang 126 Giải tích 12: Phát biểu định nghĩa nguyên hàm của hàm số f(x) trên một khoảng...

Câu 1 trang 126 Giải tích 12: Ôn tập Chương III - Nguyên hàm - Tích phân và ứng dụng. Phát biểu định nghĩa nguyên hàm của hàm số f(x) trên một khoảng

Bài 1.

a) Phát biểu định nghĩa nguyên hàm của hàm số f(x) trên một khoảng

b) Nêu phương pháp tính nguyên hàm từng phần. Cho ví dụ minh họa.

a) Kí hiệu \(K\) là khoảng hoặc đoạn hoặc nửa đoạn của tập số thực \(K\)

Hàm số \(F(x)\) gọi là một nguyên hàm của hàm số f(x) trên khoảng \(K\) nếu \(∀x ∈ K\) ta có \(F’(x) = f(x)\)

b) Phương pháp tính nguyên hàm toàn phần sựa trên cơ sở định lí:

Nếu hai hàm số  \(u = u(x)\) và \(v = v(x)\) có đạo hàm liên tục trên K thì :

 \(\int {u(x).v'(x)dx = u(x)v(x) - \int {u'(x)v(x)dx} } \) (3)

Để tính nguyên hàm toàn phần ta cần phân tích \(f(x)\) thành \(g(x).h(x)\),

- Chọn một nhân tử đặt bằng \(u\) còn nhân tử kia đặt là \(v’\)

- Tìm \(u’\) và \(v\),

- Áp dụng công thức trên, ta đưa tích phân ban đầu về một tích phân mới đơn giản hơn.

Ta cần chú ý các cách đặt thường xuyên như sau:

   \(\int {P(x){e^x}dx} \) 

 \(\int {P(x)\sin xdx} \)

 \(\int P(x)cosx dx \)

 \(\int P(x)lnx dx \)

\(u\)

Advertisements (Quảng cáo)

\(P(x)\)

\(P(x)\)

\(P(x)\)

\(ln(x)\)

\(dv\)

\(e^xdx\)

\(sinxdx\)

\(cosx dx\)

\(P(x) dx\)

Ví dụ:

Tìm nguyên hàm của hàm số \(f(x) = (3x^3- 2x) lnx\)

Giải

Đặt \(u = lnx\) 

\(\eqalign{
& \Rightarrow u’ = {1 \over x} \cr
& v’ = 3{x^3} - 2x \Rightarrow v = {3 \over 4}{x^4} - {x^2} \cr} \)

Suy ra: 

\(\eqalign{
& \int {f(x)dx = ({3 \over 4}} {x^4} - {x^2})\ln x - \int ({{3 \over 4}} {x^3} - x)dx \cr
& = ({3 \over 4}{x^4} - {x^2})\ln x - {3 \over {14}}{x^4} + {1 \over 2}{x^2} + C \cr} \)

Bạn đang xem bài tập, chương trình học môn Toán lớp 12 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)