HĐ 2
Thực hiện phép nhân \((3x + 1)({x^2} - 2x + 1)\), rồi đoán xem \((3{x^3} - 5{x^2} + x + 1):(3x + 1)\) bằng đa thức nào.
- Nhân chia đa thức bằng phương pháp phân phối
\(\begin{array}{l}(3x + 1)({x^2} - 2x + 1)\\ = 3x({x^2} - 2x + 1) + 1({x^2} - 2x + 1)\\ = 3{x^3} - 6{x^2} + 3x + {x^2} - 2x + 1\\ = 3{x^3} - 5{x^2} + x + 1\end{array}\)
Vì \((3x + 1)({x^2} - 2x + 1) = 3{x^3} - 5{x^2} + x + 1\)
\( \Rightarrow (3{x^3} - 5{x^2} + x + 1):(3x + 1) = {x^2} - 2x + 1\)
Thực hành 2
Thực hiện phép chia P(x) = \((6{x^2} + 4x)\) cho Q(x) = 2x
- Sử dụng công thức chia đa thức một biến
\((6{x^2} + 4x):2x = (6{x^2}:2x) + (4x:2x)\)
\( = 3x + 2\)
Vận dụng 2
Thực hiện các phép chia sau \(\frac{{9{x^2} + 5x + x}}{{3x}}\) và \(\frac{{(2{x^2} - 4x) + (x - 2)}}{{2 - x}}\)
- Ta chia lần lượt theo công thức đã cho, phải thu gọn các đa thức trong phép chia và xếp thứ tự lũy thừa giảm dần của biến
\(\frac{{9{x^2} + 5x + x}}{{3x}} = \frac{{9{x^2} + 6x}}{{3x}} = \frac{{9{x^2}}}{{3x}} + \frac{{6x}}{{3x}} = 3x + 2\)
Advertisements (Quảng cáo)
\(\frac{{2{x^2} - 3x - 2}}{{2 - x}} = \frac{{2{x^2} - 3x - 2}}{{ - x + 2}} = - 2x - 1\)
Thực hành 3
Thực hiện phép chia \(({x^2} + 5x + 9):(x + 2)\)
Ta sử dụng qui tắc chia 2 đa thức
\(({x^2} + 2x + 9):(x + 2) = \frac{{{x^2} + 5x + 9}}{{3x + 6}} = x + 3 + \frac{3}{{x + 2}}\) ta có :
Vậy \( = x + 3 + \frac{3}{{x + 2}}\)
Vận dụng 3
Tính diện tích đáy của một hình hộp chữ nhật (Hình 3) có chiều cao bằng (x + 3) cm và có thể tích bằng \(({x^3} + 8{x^2} + 19x + 12)\)\(c{m^3}\)
- Ta tính diện tích đáy của hình hộp chữ nhật có chiều cao là (x+3) cm
- Ta sử dụng công thức V = S.h để tìm ra diện tích đáy
\( \Rightarrow ({x^3} + 8{x^2} + 19x + 12):(x + 3) =\) diện tích đáy
Ta có :
Vậy diện tích đáy là : \({x^2} + 5x + 4\) \(c{m^2}\)