Trang chủ Lớp 7 Vở thực hành Toán 7 (Kết nối tri thức) Bài 2 (4.24) trang 73 vở thực hành Toán 7: Bài 2...

Bài 2 (4.24) trang 73 vở thực hành Toán 7: Bài 2 (4.24). Cho tam giác ABC cân tại A và M là trung điểm của BC...

Chứng minh \(\widehat {AMB} = {90^o}\) và AM là tia phân giác của góc BAC. Phân tích và giải Bài 2 (4.24) trang 73 vở thực hành Toán 7 - Bài 16. Tam giác cân. Đường trung trực của đoạn thẳng. Bài 2 (4. 24). Cho tam giác ABC cân tại A và M là trung điểm của BC....

Question - Câu hỏi/Đề bài

Bài 2 (4.24). Cho tam giác ABC cân tại A và M là trung điểm của BC. Chứng minh AM vuông góc với BC và AM là tia phân giác của góc BAC.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Chứng minh \(\widehat {AMB} = {90^o}\) và AM là tia phân giác của góc BAC .

Answer - Lời giải/Đáp án

GT

\(\Delta ABC\)cân tại A, \(M \in BC,MB = MC.\)

Advertisements (Quảng cáo)

KL

\(AM \bot BC,\widehat {MAB} = \widehat {MAC}\)

Xét tam giác ABM và ACM ta có:

AB = AC (do \(\Delta ABC\)cân tại A)

\(\widehat {ABM} = \widehat {ACM}\) (do \(\Delta ABC\)cân tại A)

MB = MC (theo giả thiết)

Vậy \(\Delta ABM = \Delta ACM\)(c – g – c). Do đó \(\widehat {MAB} = \widehat {MAC}\) hay AM là tia phân giác của góc BAC.

Đồng thời \(\widehat {AMB} = \widehat {AMC} = \frac{{\widehat {AMB} + \widehat {AMC}}}{2} = \frac{{{{180}^o}}}{2} = {90^o}\) hay \(AM \bot BC.\)

Advertisements (Quảng cáo)