Cho hình chóp tam giác đều \(S.ABC\) có độ dài trung đoạn bằng \(x\) (dm) và độ dài cạnh đáy bằng \(2x\) (dm). Diện tích xung quanh của hình chóp tam giác đều \(S.ABC\) là:
A. \({x^2}\left( {d{m^2}} \right)\)
B. \(2{x^2}\left( {d{m^2}} \right)\)
C. \(3{x^2}\left( {d{m^2}} \right)\)
D. \(4{x^2}\left( {d{m^2}} \right)\)
Advertisements (Quảng cáo)
Áp dụng công thức \({S_{xq}} = \frac{1}{2}.C.d\), trong đó \({S_{xq}}\) là diện tích xung quanh, \(C\) là chu vi đáy, \(d\) là độ dài trung đoạn của hình chóp tam giác đều.
Áp dụng công thức tính diện tích xung quanh của hình chóp tam giác đều: \({S_{xq}} = \frac{1}{2}.C.d\)
Ta có: \({S_{xq}} = \frac{1}{2}.\left( {2x.3} \right).x = 3{x^2}\left( {d{m^2}} \right)\)
→ Đáp án đúng là đáp án C.