Trang chủ Lớp 8 SBT Toán 8 - Cánh diều Bài 19 trang 66 SBT Toán 8 – Cánh diều: Cho tứ...

Bài 19 trang 66 SBT Toán 8 – Cánh diều: Cho tứ giác \(ABCD\) có \(AD = BC\). Đường thẳng đi qua trung điểm \(M\) và \(N\) lần lượt của...

Định nghĩa: Đường trung bình của tam giác là đoạn thẳng nối trung điểm hai cạnh tam giác đó. Tính chất. Hướng dẫn cách giải/trả lời bài 19 trang 66 sách bài tập toán 8 – Cánh diều - Bài 3. Đường trung bình của tam giác. Cho tứ giác \(ABCD\) có \(AD = BC\). Đường thẳng đi qua trung điểm \(M\) và \(N\) lần lượt của...

Question - Câu hỏi/Đề bài

Cho tứ giác \(ABCD\) có \(AD = BC\). Đường thẳng đi qua trung điểm \(M\) và \(N\) lần lượt của các cạnh \(AB\) và \(CD\) cắt các đường thẳng \(AD\) và \(BC\) lần lượt tại \(E\) và \(F\). Chứng minh: \(\widehat {AEM} = \widehat {MFB}\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Định nghĩa: Đường trung bình của tam giác là đoạn thẳng nối trung điểm hai cạnh tam giác đó.

Tính chất: Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh đó.

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

Lấy \(I\) là trung điểm của \(BD\). Do \(MI.NI\) lần lượt là các đường trung bình của tam giác \(ABD\) và \(BDC\) nên \(MI = \frac{{AD}}{2}\), \(MI//AD,NI = \frac{{BC}}{2};NI//BC\). Mà \(AD = BC\) nên \(MI = NI\), suy ra tam giác \(IMN\) cân ở \(I\).

Do đó \(\widehat {IMN} = \widehat {INM}\). Lại có \(\widehat {IMN} = \widehat {AEM}\) (hai góc đồng vị, \(IM//AE\)). Suy ra \(\widehat {INM} = \widehat {AEM}\). Mặt khác \(\widehat {INM} = \widehat {MDB}\) (hai góc so le trong, \(IN//FB\)). Suy ra \(\widehat {AEM} = \widehat {MFB}\).

Advertisements (Quảng cáo)