Trong Hình 10, cho biết \(ABCD\) là hình thang, \(AB//CD\left( {AB < CD} \right)\); \(M\) là trung điểm của \(DC\); \(AM\) cắt \(BD\) ở \(I\); \(BM\) cắt \(AC\) ở \(K\); \(IK\) cắt \(AD,BC\) lần lượt ở \(E,F\). Chứng minh:
a) \(IK//AB\)
b) \(EI = IK = KF\)
Dựa vào định lí Thales: Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại thì nó định ra trên hai cạnh đó những đoạn thẳng tương ứng tỉ lệ.
a) Do \(DM//AB\) nên \(\frac{{IM}}{{IA}} = \frac{{DM}}{{AB}} = \frac{{MC}}{{AB}}\) (1) (do \(DM = MC\)).
Advertisements (Quảng cáo)
Mặt khác, do \(MC//AB\) nên \(\frac{{MK}}{{KB}} = \frac{{MC}}{{AB}}\) (2)
Từ (1) và (2) suy ra \(\frac{{IM}}{{IA}} = \frac{{MK}}{{KB}}\)
Vì thế \(IK//AB\) (định lí Thales đảo)
b) Áp dụng định lí Thales lần lượt cho các tam giác \(ADM\) với \(EI//DM\), tam giác \(MAB\) với \(IK//AB\) và tam giác \(BMC\) với \(KF//MC\), ta có:
\(\frac{{EI}}{{DM}} = \frac{{AI}}{{AM}} = \frac{{BK}}{{BM}} = \frac{{KF}}{{MC}}\)
Suy ra \(EI = KF\) (do \(DM = MC\)). Mặt khác, áp dụng định lí Thales lần lượt cho các tam giác \(ADM\) với \(EI//DM\) và tam giác \(AMC\) với \(IK//MC\), ta có:
\(\frac{{EI}}{{DM}} = \frac{{AI}}{{AM}} = \frac{{IK}}{{MC}}\)
Suy ra \(EI = IK\) (do \(DM = MC\)). Do \(EI = KF\) và \(EI = IK\) nên \(EI = IK = KF\).