Trang chủ Lớp 8 SBT Toán 8 - Cánh diều Bài 6 trang 60 SBT Toán 8 – Cánh diều: Trong Hình...

Bài 6 trang 60 SBT Toán 8 – Cánh diều: Trong Hình 10, cho biết ABCD là hình thang, AB//CD\left( {AB \(IK//AB EI=IK=KF...

Dựa vào định lí Thales: Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại thì nó định ra trên hai cạnh. Giải và trình bày phương pháp giải bài 6 trang 60 sách bài tập toán 8 – Cánh diều - Bài 1. Định lí Thalès trong tam giác. Trong Hình 10, cho biết ABCD là hình thang, AB//CD\left( {AB \(IK//AB EI=IK=KF :...

Question - Câu hỏi/Đề bài

Trong Hình 10, cho biết ABCD là hình thang, AB//CD(AB<CD); M là trung điểm của DC; AM cắt BDI; BM cắt ACK; IK cắt AD,BC lần lượt ở E,F. Chứng minh:

a) IK//AB

b) EI=IK=KF

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Dựa vào định lí Thales: Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại thì nó định ra trên hai cạnh đó những đoạn thẳng tương ứng tỉ lệ.

Answer - Lời giải/Đáp án

a) Do DM//AB nên IMIA=DMAB=MCAB (1) (do DM=MC).

Advertisements (Quảng cáo)

Mặt khác, do MC//AB nên MKKB=MCAB (2)

Từ (1) và (2) suy ra IMIA=MKKB

Vì thế IK//AB (định lí Thales đảo)

b) Áp dụng định lí Thales lần lượt cho các tam giác ADM với EI//DM, tam giác MAB với IK//AB và tam giác BMC với KF//MC, ta có:

EIDM=AIAM=BKBM=KFMC

Suy ra EI=KF (do DM=MC). Mặt khác, áp dụng định lí Thales lần lượt cho các tam giác ADM với EI//DM và tam giác AMC với IK//MC, ta có:

EIDM=AIAM=IKMC

Suy ra EI=IK (do DM=MC). Do EI=KFEI=IK nên EI=IK=KF.

Advertisements (Quảng cáo)