Tính các góc của hình thang ABCD (AB,CD là hai đáy) biết \(\widehat A = 2\widehat D\), \(\widehat B = \widehat C + 40^\circ \).
Sử dụng tính chất của hình thang cân và áp dụng định lí tổng các góc trong một tứ giác.
Trong hình thang ABCD có: \(\widehat A\) và \(\widehat D\) là hai góc bù nhau nên ta có \(\widehat A + \widehat D = 180^\circ \).
Advertisements (Quảng cáo)
Mà \(\widehat A = 2\widehat D\) nên \(2\widehat D + \widehat D = 180^\circ \), suy ra \(\widehat D = 60^\circ \).
Do đó \(\widehat A = 2\widehat D = 2.60^\circ = 120^\circ \).
Tương tự \(\widehat B\) và \(\widehat C\) là hai góc bù nhau nên ta có \(\widehat B + \widehat C = 180^\circ \).
Mà \(\widehat B = \widehat C + 40^\circ \) nên \(\widehat C + 40^\circ + \widehat C = 180^\circ \) hay \(2\widehat C = 140^\circ \), suy ra \(\widehat C = 70^\circ \).
Do đó \(\widehat B = \widehat C + 40^\circ = 70^\circ + 40^\circ = 110^\circ \).
Vậy hình thang ABCD có \(\widehat A = 120^\circ \); \(\widehat B = 110^\circ \); \(\widehat C = 70^\circ \); \(\widehat D = 60^\circ \).