Cho tam giác ABC vuông cân tại đỉnh A. Ghép thêm vào phía ngoài tam giác đó tam giác BCD vuông cân tại đỉnh B. Chứng minh tứ giác ABDC là một hình thang vuông (hình thang có một cạnh bên vuông góc với đáy).
Sử dụng tính chất của tam giác cân, tổng ba góc của tam giác; dấu hiệu nhận biết hình thang, hình thang vuông.
Do \(\Delta ABC\) vuông cân tại đỉnh A nên \(\widehat {ABC} = \widehat {ACB}\); \(\widehat A = 90^\circ \)
Advertisements (Quảng cáo)
Xét trong \(\Delta ABC\) có \(\widehat {ABC} + \widehat {ACB} + \widehat A = 180^\circ \)
Nên \(\widehat {ABC} = \widehat {ACB} = \frac{{180^\circ - \widehat A}}{2} = \frac{{180^\circ - 90^\circ }}{2} = 45^\circ \)
Tương tự do \(\Delta BCD\) vuông cân tại đỉnh B nên \(\widehat {BCD} = \widehat {BDC}\); \(\widehat {CBD} = 90^\circ \)
Xét trong \(\Delta BCD\) có \(\widehat {BCD} + \widehat {BDC} + \widehat {CBD} = 180^\circ \)
Nên \(\widehat {BCD} = \widehat {BDC} = \frac{{180^\circ - \widehat {CBD}}}{2} = \frac{{180^\circ - 90^\circ }}{2} = 45^\circ \).
Ta có \(\widehat {ABC} = 45^\circ = \widehat {BCD}\) nên AB // CD (hai góc so le trong bằng nhau).
Vậy ABCD là một hình thang với AB, CD là hai đáy; cạnh bên của hình thang là AC vuông góc với đáy AB nên hình thang đó là hình thang vuông.