Chọn một phương án đúng trong mỗi câu sau:
Câu 1
Trong các đẳng thức sau, cái nào là hằng đẳng thức
A.\(a\left( {a + 1} \right) = a + 1\)
B.\({a^2} - 1 = a\).
C.\(\left( {a + b} \right)\left( {a - b} \right) = {a^2} + {b^2}\)
D.\(\left( {a + 1} \right)\left( {a + 2} \right) = {a^2} + 3a + 2\).
Hằng đẳng thức là đẳng thức mà hai vế luôn cùng nhận một giá trị khi thay các chữ trong đẳng thức bằng các số tùy ý.
Ta có: \(\;\left( {a + 1} \right)\left( {a + 2} \right) = {a^2}\; + 2a + a + 2 = {a^2}\; + 3a + 2.\)
Do đó đẳng thức trên là một đẳng thức.
Các đẳng thức còn lại, khi thay một giá trị a, b bất kì vào hai vế ta được kết quả không bằng nhau nên không phải là hằng đẳng thức.
Chọn đáp án D.
Câu 2
Đa thức \({x^3} - 8\) được phân tích thành tích của hai đa thức
A.\(x - 2\) và \({x^2} - 2x - 4\)
B. \(x - 2\) và \({x^2} + 2x - 4\)
C. \(x - 2\) và \({x^2} + 2x + 4\)
D. \(x - 2\) và \({x^2} - 2x + 4\)
Sử dụng hằng đẳng thức
\({a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\).
Ta có: \({x^3}\;-8 = {x^3} - {2^3}\; = \left( {x - 2} \right)({x^2}\; + 2x + 4).\)
Chọn đáp án C.
Câu 3
Biểu thức \({x^2} + x + \frac{1}{4}\) viết được dưới dạng bình phương của một tổng là
A.\({\left[ {x + \left( { - \frac{1}{2}} \right)} \right]^2}\).
B.\({\left( {x + \frac{1}{2}} \right)^2}\).
C.\({\left( {2x + \frac{1}{2}} \right)^2}\)
D.\({\left( {\frac{1}{2}x + 1} \right)^2}\)
Sử dụng hằng đẳng thức
Advertisements (Quảng cáo)
\({\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\).
Ta có: \({x^2} + x + \frac{1}{4} = {x^2} + 2.x.\frac{1}{2} + {\left( {\frac{1}{2}} \right)^2} = {\left( {x + \frac{1}{2}} \right)^2}\).
Chọn đáp án B.
Câu 4
Khẳng định nào sau đây là đúng?
A. \(\left( {A - B} \right)\left( {{A^2} - AB + {B^2}} \right) = {A^3} - {B^3}\).
B. \(\left( {A + B} \right)\left( {{A^2} + AB + {B^2}} \right) = {A^3} + {B^3}\).
C. \(\left( {A + B} \right)\left( {{A^2} - AB + {B^2}} \right) = {A^3} - {B^3}\).
D. \(\left( {A + B} \right)\left( {{A^2} - AB + {B^2}} \right) = {A^3} + {B^3}\).
Ta sử dụng các hằng đẳng thức:
\({A^3}\; + {B^3}\; = \left( {A + B} \right)({A^2}\;-AB + {B^2})\);
\({A^3}\;-{B^3}\; = \left( {A-B} \right)({A^2}\; + AB + {B^2}).\)
Ta có:
\({A^3}\; + {B^3}\; = \left( {A + B} \right)({A^2}\;-AB + {B^2})\);
\({A^3}\;-{B^3}\; = \left( {A-B} \right)({A^2}\; + AB + {B^2}).\)
Chọn đáp án D.
Câu 5
Rút gọn biểu thức \(\left( {x + 1} \right)\left( {x - 1} \right) - \left( {x + 2} \right)\left( {x - 2} \right)\) ta được
A. 5.
B. 4.
C. 3.
D. -3.
Sử dụng hằng đẳng thức
\({a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\)
Sử dụng tính chất giao hoán, kết hợp thu gọn các đơn thức đồng dạng với nhau.
Ta có: \(\left( {x + 1} \right)\left( {x - 1} \right) - \left( {x + 2} \right)\left( {x - 2} \right)\)
\( = {x^2}\; - 1 - ({x^2}\; - {2^2}) = \;{x^2} - 1 - {x^2}\; + 4 = 3\).
Chọn đáp án C.