Cho hình bình hành ABCD, O là giao điểm của hai đường chéo. Qua O, vẽ đường thẳng cắt hai cạnh AB, CD ở E, F. Qua O vẽ đường thẳng cắt hai cạnh AD, BC ở G, H. Chứng minh rằng EGFH là hình bình hành.
Giải:
Xét ∆ OAE và ∆ OCF:
OA = OC (tính chất hình bình hành)
\(\widehat {AOE} = \widehat {COF}\) (đối đỉnh)
\(\widehat {OAE} = \widehat {OCF}\) (so le trong)
Do đó: ∆ OAE = ∆ OCF (g.c.g)
Advertisements (Quảng cáo)
⇒ OE = OF (1)
Xét ∆ OAG và ∆ OCH:
OA = OC (tính chất hình bình hành)
\(\widehat {AOG} = \widehat {COH}\) (đối đỉnh)
\(\widehat {OAG} = \widehat {OCH}\) (so le trong)
Do đó: ∆ OAG = ∆ OCH (g.c.g)
⇒ OG = OH (2)
Từ (1) và (2) suy ra: Tứ giác EGFH là hình bình hành ( vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường)