Hình thang cân ABCD có AB // CD, O là giao điểm của hai đường chéo. Chứng minh rằng OA=OB, OC=OD.. Câu 23 trang 82 Sách bài tập (SBT) Toán 8 tập 1 - Bài 3. Hình thang cân
Hình thang cân ABCD có AB // CD, O là giao điểm của hai đường chéo. Chứng minh rằng OA=OB, OC=OD.
Xét ∆ ADC và ∆ BCD, ta có:
AD = BC (tính chất hình thang cân)
\(\widehat {ADC} = \widehat {BCD}\) (gt)
DC cạnh chung
Do đó: ∆ ADC = ∆ BCD (c.g.c)
Advertisements (Quảng cáo)
\( \Rightarrow {\widehat C_1} = {\widehat D_1}\)
Trong ∆ OCD ta có: \({\widehat C_1} = {\widehat D_1}\)
⇒ ∆ OCD cân tại O
⇒ OC = OD (1)
AC = BD ( tính chất hình thang cân)
⇒ AO + OC = BO + OD (2)
Từ (1) và (2) suy ra: AO = BO