Tam giác ABC có AB = 3cm, BC = 5cm, CA = 7cm.
Tam giác A’B’C’ đồng dạng với tam giác ABC có cạnh nhỏ nhất là 4,5cm.
Tính các cạnh còn lại của tam giác A’B’C’.
Tam giác A’B’C’ đồng dạng với tam giác ABC có cạnh nhỏ nhất là 4,5cm nên cạnh nhỏ nhất của ∆ A’B’C’ tương ứng với cạnh AB nhỏ nhất của ∆ ABC.
Giả sử A’B’ là cạnh nhỏ nhất của ∆ A’B’C’
Advertisements (Quảng cáo)
Vì ∆ A’B’C’ đồng dạng với tam giác ABC nên \({{A’B’} \over {AB}} = {{A’C’} \over {AC}} = {{B’C’} \over {BC}}\) (1)
Thay AB = 3(cm), AC = 7 (cm), BC = 5 (cm) , A’B’ = 4,5 (cm) vào (1)
ta có: \({{4,5} \over 3} = {{A’C’} \over 7} = {{B’C’} \over 5}\) (cm)
Vậy: A’C’ \( = {{7.4,5} \over 3} = 10,5\) (cm)
B’C’ \( = {{5.4,5} \over 3} = 7,5\) (cm).