Trang chủ Lớp 8 SBT Toán lớp 8 (sách cũ) Câu 28 trang 90 SBT Toán 8 tập 2: Chứng minh rằng...

Câu 28 trang 90 SBT Toán 8 tập 2: Chứng minh rằng ba tam giác ADE, ABE và BEC đông dạng với nhau từng...

Chứng minh rằng ba tam giác ADE, ABE và BEC đông dạng với nhau từng đôi một. Câu 28 trang 90 Sách bài tập (SBT) Toán 8 tập 2 - Bài 4. Khái niệm hai tam giác đồng dạng

Hình thang ABCD (AB // CD) có CD = 2AB. Gọi E là trung điểm của DC. Chứng minh rằng ba tam giác ADE, ABE và BEC đông dạng với nhau từng đôi một. (Chú ý viết các đỉnh của hai tam giác đồng dạng theo thứ tự tương ứng với nhau).

 

Vì CD = 2AB (gt) nên AB \( = {1 \over 2}CD\)

Vì E là trung điểm của CD nên DE = EC \( = {1 \over 2}CD\)

Suy ra: AB = DE = EC

Hình thang ABCD có đáy AB = EC nên hai cạnh bên AE và BC song song với nhau:

Xét ∆ AEB và ∆ CBE, ta có:

\(\widehat {ABE} = \widehat {BEC}\)  (so le trong)

\(\widehat {AEB} = \widehat {EBC}\) (so le trong)

Advertisements (Quảng cáo)

BE canh chung

⇒ ∆ AEB = ∆ CBE (g.c.g)  (1)

Hình thang ABED có đáy AB = DE nên hai cạnh bên AD và BE song song với nhau.

Xét ∆ AEB và ∆ EAD, ta có:

\(\widehat {BAE} = \widehat {AED}\) (so le trong)

\(\widehat {AEB} = \widehat {EAD}\) (so le trong)

AE cạnh chung

⇒ ∆ AEB = ∆ EAD (g.c.g)  (2)

Từ (1) và (2) suy ra: ∆ AEB = ∆ EAD = ∆ CBE.

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 8 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)