Tìm giá trị lớn nhất (hoặc nhỏ nhất) của các biểu thức sau:
a. A\( = {x^2} - 6x + 11\)
b. B\( = 2{x^2} + 10x - 1\)
c. C\( = 5x - {x^2}\)
a. A\( = {x^2} - 6x + 11\) \( = {x^2} - 2.3x + 9 + 2 = {\left( {x - 3} \right)^2} + 2\)
Ta có: \({\left( {x - 3} \right)^2} \ge 0 \Rightarrow {\left( {x - 3} \right)^2} + 2 \ge 2\)
\( \Rightarrow A \ge 2\). Vậy A = 2 là giá trị bé nhất của biểu thức tại \(x = 3\)
Advertisements (Quảng cáo)
b. B\( = 2{x^2} + 10x – 1\)= \(2\left( {{x^2} + 5x - {1 \over 2}} \right)\)
\(\eqalign{ & = 2\left[ {x + 2.{5 \over 2}x + {{\left( {{5 \over 2}} \right)}^2} - {{\left( {{5 \over 2}} \right)}^2} - {1 \over 2}} \right] \cr & = 2\left[ {{{\left( {x + {5 \over 2}} \right)}^2} - {{25} \over 4} - {2 \over 4}} \right] = 2\left[ {{{\left( {x + {5 \over 2}} \right)}^2} - {{27} \over 4}} \right] = 2{\left( {x + {5 \over 2}} \right)^2} - {{27} \over 2} \cr} \)
Vì \({\left( {x + {5 \over 2}} \right)^2} \ge 0 \Rightarrow 2{\left( {x + {5 \over 2}} \right)^2} \ge 0 \Rightarrow 2{\left( {x + {5 \over 2}} \right)^2} - {{27} \over 2} \ge - {{27} \over 2}\)
\( \Rightarrow B \ge {{27} \over 2}\). Vậy B\( = - {{27} \over 2}\) là giá trị nhỏ nhất tại \(x = - {5 \over 2}\)
c. \( C= 5x - {x^2}\) \( = - ({x^2} - 5x) = - \left[ {{x^2} - 2.{5 \over 2}x + {{\left( {{5 \over 2}} \right)}^2} - {{\left( {{5 \over 2}} \right)}^2}} \right]\)
\( = - \left[ {{{\left( {x - {5 \over 2}} \right)}^2} - {{25} \over 4}} \right] = - {\left( {x - {5 \over 2}} \right)^2} + {{25} \over 4}\)
Vì \({\left( {x - {5 \over 2}} \right)^2} \ge 0 \Rightarrow - {\left( {x - {5 \over 2}} \right)^2} \le 0 \Rightarrow - {\left( {x - {5 \over 2}} \right)^2} + {{25} \over 4} \le {{25} \over 4}\)
\( \Rightarrow C \le {{25} \over 4}\). Vậy C\( = {{25} \over 4}\) là giá trị nhỏ nhất tại \(x = {5 \over 2}\)